IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v291y2021ics0306261921003470.html
   My bibliography  Save this article

Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit

Author

Listed:
  • Nimalsiri, Nanduni I.
  • Ratnam, Elizabeth L.
  • Mediwaththe, Chathurika P.
  • Smith, David B.
  • Halgamuge, Saman K.

Abstract

Increased worldwide uptake of Electric Vehicles (EVs) accentuates the need for developing coordinated EV charging and discharging methods that mitigate detrimental and sustained under-voltage and over-voltage conditions in distribution networks. In this paper, a centrally coordinated EV charge-discharge scheduling method is proposed, referred to as Network-aware EV Charging (and Discharging) N-EVC(D), that takes into account both EV customer economics and distribution grid constraints. Specifically, N-EVC(D) is designed to maintain quasi-steady-state feeder voltages within statutory power quality limits, while minimizing EV customer operational costs associated with: (1) purchasing (or otherwise being compensated for delivering) electricity on a time-of-use tariff; and (2) battery degradation due to frequent charging and discharging. The optimization problem for N-EVC(D) is formulated as a quadratic program, with voltage constraints to limit voltage variability across a radial distribution feeder, and individual EV constraints to satisfy heterogeneous EV charge requirements. In N-EVC(D), each grid-connected EV follows an operator-specified battery schedule that is obtained by solving the proposed quadratic program. A receding horizon implementation is also proposed to support near-real-time N-EVC(D) operations while accommodating non-deterministic EV arrivals and departures. The benefits of N-EVC(D) are assessed by means of numerical simulations carried out on an IEEE test feeder populated with a real-world dataset of residential load collected from households within an Australian distribution network. The simulation results confirm that N-EVC(D) mitigates non-compliant voltage deviations that would otherwise occur when voltage constraints are not enforced. Compared to uncoordinated EV charging, N-EVC(D) offers a 92% – 111% reduction in the operational costs incurred by EV customers.

Suggested Citation

  • Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
  • Handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003470
    DOI: 10.1016/j.apenergy.2021.116857
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261921003470
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2021.116857?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wang, Guang Chao & Ratnam, Elizabeth & Haghi, Hamed Valizadeh & Kleissl, Jan, 2019. "Corrective receding horizon EV charge scheduling using short-term solar forecasting," Renewable Energy, Elsevier, vol. 130(C), pages 1146-1158.
    2. Ratnam, Elizabeth L. & Weller, Steven R. & Kellett, Christopher M., 2015. "An optimization-based approach to scheduling residential battery storage with solar PV: Assessing customer benefit," Renewable Energy, Elsevier, vol. 75(C), pages 123-134.
    3. Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
    4. Hadi Suyono & Mir Toufikur Rahman & Hazlie Mokhlis & Mohamadariff Othman & Hazlee Azil Illias & Hasmaini Mohamad, 2019. "Optimal Scheduling of Plug-in Electric Vehicle Charging Including Time-of-Use Tariff to Minimize Cost and System Stress," Energies, MDPI, vol. 12(8), pages 1-21, April.
    5. Dong, Xiaohong & Mu, Yunfei & Xu, Xiandong & Jia, Hongjie & Wu, Jianzhong & Yu, Xiaodan & Qi, Yan, 2018. "A charging pricing strategy of electric vehicle fast charging stations for the voltage control of electricity distribution networks," Applied Energy, Elsevier, vol. 225(C), pages 857-868.
    6. Shareef, Hussain & Islam, Md. Mainul & Mohamed, Azah, 2016. "A review of the stage-of-the-art charging technologies, placement methodologies, and impacts of electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 64(C), pages 403-420.
    7. Ratnam, Elizabeth L. & Weller, Steven R., 2018. "Receding horizon optimization-based approaches to managing supply voltages and power flows in a distribution grid with battery storage co-located with solar PV," Applied Energy, Elsevier, vol. 210(C), pages 1017-1026.
    8. Ming-Hui Chang & Han-Pang Huang & Shu-Wei Chang, 2013. "A New State of Charge Estimation Method for LiFePO 4 Battery Packs Used in Robots," Energies, MDPI, vol. 6(4), pages 1-24, April.
    9. Chong Cao & Zhouquan Wu & Bo Chen, 2020. "Electric Vehicle–Grid Integration with Voltage Regulation in Radial Distribution Networks," Energies, MDPI, vol. 13(7), pages 1-18, April.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhang, Chao & Yin, Wanjun & Wen, Tao, 2024. "An advanced multi-objective collaborative scheduling strategy for large scale EV charging and discharging connected to the predictable wind power grid," Energy, Elsevier, vol. 287(C).
    2. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    3. Guo, Shiliang & Li, Pengpeng & Ma, Kai & Yang, Bo & Yang, Jie, 2022. "Robust energy management for industrial microgrid considering charging and discharging pressure of electric vehicles," Applied Energy, Elsevier, vol. 325(C).
    4. Gupta, Preeti & Pal Verma, Yajvender, 2021. "Voltage profile improvement using demand side management in distribution networks under frequency linked pricing regime," Applied Energy, Elsevier, vol. 295(C).
    5. Ming, Fangzhu & Gao, Feng & Liu, Kun & Li, Xingqi, 2023. "A constrained DRL-based bi-level coordinated method for large-scale EVs charging," Applied Energy, Elsevier, vol. 331(C).
    6. Zeynali, Saeed & Nasiri, Nima & Marzband, Mousa & Ravadanegh, Sajad Najafi, 2021. "A hybrid robust-stochastic framework for strategic scheduling of integrated wind farm and plug-in hybrid electric vehicle fleets," Applied Energy, Elsevier, vol. 300(C).
    7. Saleh Aghajan-Eshkevari & Sasan Azad & Morteza Nazari-Heris & Mohammad Taghi Ameli & Somayeh Asadi, 2022. "Charging and Discharging of Electric Vehicles in Power Systems: An Updated and Detailed Review of Methods, Control Structures, Objectives, and Optimization Methodologies," Sustainability, MDPI, vol. 14(4), pages 1-31, February.
    8. Aghajan-Eshkevari, Saleh & Ameli, Mohammad Taghi & Azad, Sasan, 2023. "Optimal routing and power management of electric vehicles in coupled power distribution and transportation systems," Applied Energy, Elsevier, vol. 341(C).
    9. Afaq Ahmad & Muhammad Khalid & Zahid Ullah & Naveed Ahmad & Mohammad Aljaidi & Faheem Ahmed Malik & Umar Manzoor, 2022. "Electric Vehicle Charging Modes, Technologies and Applications of Smart Charging," Energies, MDPI, vol. 15(24), pages 1-32, December.
    10. Pegah Alaee & Julius Bems & Amjad Anvari-Moghaddam, 2023. "A Review of the Latest Trends in Technical and Economic Aspects of EV Charging Management," Energies, MDPI, vol. 16(9), pages 1-28, April.
    11. Meng, Weiqi & Song, Dongran & Huang, Liansheng & Chen, Xiaojiao & Yang, Jian & Dong, Mi & Talaat, M., 2024. "A Bi-level optimization strategy for electric vehicle retailers based on robust pricing and hybrid demand response," Energy, Elsevier, vol. 289(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Das, H.S. & Rahman, M.M. & Li, S. & Tan, C.W., 2020. "Electric vehicles standards, charging infrastructure, and impact on grid integration: A technological review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    2. Hannan, M.A. & Lipu, M.S.H. & Hussain, A. & Mohamed, A., 2017. "A review of lithium-ion battery state of charge estimation and management system in electric vehicle applications: Challenges and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 834-854.
    3. Antonia Golab & Sebastian Zwickl-Bernhard & Hans Auer, 2022. "Minimum-Cost Fast-Charging Infrastructure Planning for Electric Vehicles along the Austrian High-Level Road Network," Energies, MDPI, vol. 15(6), pages 1-26, March.
    4. Zhang, Wenjie & Gandhi, Oktoviano & Quan, Hao & Rodríguez-Gallegos, Carlos D. & Srinivasan, Dipti, 2018. "A multi-agent based integrated volt-var optimization engine for fast vehicle-to-grid reactive power dispatch and electric vehicle coordination," Applied Energy, Elsevier, vol. 229(C), pages 96-110.
    5. Md. Mosaraf Hossain Khan & Amran Hossain & Aasim Ullah & Molla Shahadat Hossain Lipu & S. M. Shahnewaz Siddiquee & M. Shafiul Alam & Taskin Jamal & Hafiz Ahmed, 2021. "Integration of Large-Scale Electric Vehicles into Utility Grid: An Efficient Approach for Impact Analysis and Power Quality Assessment," Sustainability, MDPI, vol. 13(19), pages 1-18, October.
    6. Zou, Wenke & Sun, Yongjun & Gao, Dian-ce & Zhang, Xu & Liu, Junyao, 2023. "A review on integration of surging plug-in electric vehicles charging in energy-flexible buildings: Impacts analysis, collaborative management technologies, and future perspective," Applied Energy, Elsevier, vol. 331(C).
    7. Junaid Bin Fakhrul Islam & Mir Toufikur Rahman & Shameem Ahmad & Tofael Ahmed & G. M. Shafiullah & Hazlie Mokhlis & Mohamadariff Othman & Tengku Faiz Tengku Mohmed Noor Izam & Hasmaini Mohamad & Moham, 2023. "Multi-Objective-Based Charging and Discharging Coordination of Plug-in Electric Vehicle Integrating Capacitor and OLTC," Energies, MDPI, vol. 16(5), pages 1-20, February.
    8. Shafqat Jawad & Junyong Liu, 2020. "Electrical Vehicle Charging Services Planning and Operation with Interdependent Power Networks and Transportation Networks: A Review of the Current Scenario and Future Trends," Energies, MDPI, vol. 13(13), pages 1-24, July.
    9. Hu, Jiaxiang & Hu, Weihao & Cao, Di & Sun, Xinwu & Chen, Jianjun & Huang, Yuehui & Chen, Zhe & Blaabjerg, Frede, 2024. "Probabilistic net load forecasting based on transformer network and Gaussian process-enabled residual modeling learning method," Renewable Energy, Elsevier, vol. 225(C).
    10. Anilkumar, T.T. & Simon, Sishaj P. & Padhy, Narayana Prasad, 2017. "Residential electricity cost minimization model through open well-pico turbine pumped storage system," Applied Energy, Elsevier, vol. 195(C), pages 23-35.
    11. Hao, Ran & Lu, Tianguang & Ai, Qian & Wang, Zhe & Wang, Xiaolong, 2020. "Distributed online learning and dynamic robust standby dispatch for networked microgrids," Applied Energy, Elsevier, vol. 274(C).
    12. Vieira, Filomeno M. & Moura, Pedro S. & de Almeida, Aníbal T., 2017. "Energy storage system for self-consumption of photovoltaic energy in residential zero energy buildings," Renewable Energy, Elsevier, vol. 103(C), pages 308-320.
    13. F. Isorna Llerena & E. López González & J. J. Caparrós Mancera & F. Segura Manzano & J. M. Andújar, 2021. "Hydrogen vs. Battery-Based Propulsion Systems in Unipersonal Vehicles—Developing Solutions to Improve the Sustainability of Urban Mobility," Sustainability, MDPI, vol. 13(10), pages 1-16, May.
    14. Hu, Xiaosong & Feng, Fei & Liu, Kailong & Zhang, Lei & Xie, Jiale & Liu, Bo, 2019. "State estimation for advanced battery management: Key challenges and future trends," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    15. Sultana, U. & Khairuddin, Azhar B. & Sultana, Beenish & Rasheed, Nadia & Qazi, Sajid Hussain & Malik, Nimra Riaz, 2018. "Placement and sizing of multiple distributed generation and battery swapping stations using grasshopper optimizer algorithm," Energy, Elsevier, vol. 165(PA), pages 408-421.
    16. Dingyi Lu & Yunqian Lu & Kexin Zhang & Chuyuan Zhang & Shao-Chao Ma, 2023. "An Application Designed for Guiding the Coordinated Charging of Electric Vehicles," Sustainability, MDPI, vol. 15(14), pages 1-16, July.
    17. Van Quan Dao & Minh-Chau Dinh & Chang Soon Kim & Minwon Park & Chil-Hoon Doh & Jeong Hyo Bae & Myung-Kwan Lee & Jianyong Liu & Zhiguo Bai, 2021. "Design of an Effective State of Charge Estimation Method for a Lithium-Ion Battery Pack Using Extended Kalman Filter and Artificial Neural Network," Energies, MDPI, vol. 14(9), pages 1-20, May.
    18. Rahman, Syed & Khan, Irfan Ahmed & Khan, Ashraf Ali & Mallik, Ayan & Nadeem, Muhammad Faisal, 2022. "Comprehensive review & impact analysis of integrating projected electric vehicle charging load to the existing low voltage distribution system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 153(C).
    19. Shyh-Chin Huang & Kuo-Hsin Tseng & Jin-Wei Liang & Chung-Liang Chang & Michael G. Pecht, 2017. "An Online SOC and SOH Estimation Model for Lithium-Ion Batteries," Energies, MDPI, vol. 10(4), pages 1-18, April.
    20. Fathy, Ahmed & Ferahtia, Seydali & Rezk, Hegazy & Yousri, Dalia & Abdelkareem, Mohammad Ali & Olabi, A.G., 2022. "Optimal adaptive fuzzy management strategy for fuel cell-based DC microgrid," Energy, Elsevier, vol. 247(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:291:y:2021:i:c:s0306261921003470. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.