IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i9p2400-d169165.html
   My bibliography  Save this article

Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production

Author

Listed:
  • Stavros Lazarou

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical & Technological Education (ASPETE), Heraklion Attikis, 141 21 Athens, Greece)

  • Vasiliki Vita

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical & Technological Education (ASPETE), Heraklion Attikis, 141 21 Athens, Greece)

  • Christos Christodoulou

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical & Technological Education (ASPETE), Heraklion Attikis, 141 21 Athens, Greece)

  • Lambros Ekonomou

    (Department of Electrical and Electronic Engineering Educators, School of Pedagogical & Technological Education (ASPETE), Heraklion Attikis, 141 21 Athens, Greece)

Abstract

The connection of electric vehicles to distribution networks has been an emerging issue of paramount importance for power systems. On one hand, it provides new opportunities for climate change mitigation, if electric energy used for charging is produced from zero emission sources. On the other hand, it stresses networks that are now required to accommodate, in addition to the loads and production from distributed generation they are initially designed for, loads from electric vehicles charging. In order to achieve maximum use of the grid without substantially affecting its performance, these issues have to be addressed in a coordinated manner, which requires adequate knowledge of the system under consideration. It is advantageous that electric vehicle charging can be controlled to a certain degree. This research provides better understanding of real distribution networks’ operation, proposing specific operational points through minimizing electric vehicle charging effects. The probabilistic Monte Carlo method on high performance computers is used for the calculations.

Suggested Citation

  • Stavros Lazarou & Vasiliki Vita & Christos Christodoulou & Lambros Ekonomou, 2018. "Calculating Operational Patterns for Electric Vehicle Charging on a Real Distribution Network Based on Renewables’ Production," Energies, MDPI, vol. 11(9), pages 1-15, September.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2400-:d:169165
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/9/2400/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/9/2400/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Rahbari, Omid & Vafaeipour, Majid & Omar, Noshin & Rosen, Marc A. & Hegazy, Omar & Timmermans, Jean-Marc & Heibati, Seyedmohammadreza & Bossche, Peter Van Den, 2017. "An optimal versatile control approach for plug-in electric vehicles to integrate renewable energy sources and smart grids," Energy, Elsevier, vol. 134(C), pages 1053-1067.
    2. Knezović, Katarina & Marinelli, Mattia & Zecchino, Antonio & Andersen, Peter Bach & Traeholt, Chresten, 2017. "Supporting involvement of electric vehicles in distribution grids: Lowering the barriers for a proactive integration," Energy, Elsevier, vol. 134(C), pages 458-468.
    3. Farid, Amro M. & Jiang, Bo & Muzhikyan, Aramazd & Youcef-Toumi, Kamal, 2016. "The need for holistic enterprise control assessment methods for the future electricity grid," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 669-685.
    4. Wu, Fei & Sioshansi, Ramteen, 2017. "A two-stage stochastic optimization model for scheduling electric vehicle charging loads to relieve distribution-system constraints," Transportation Research Part B: Methodological, Elsevier, vol. 102(C), pages 55-82.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bowen Zhou & Xiao Yang & Dongsheng Yang & Zhile Yang & Tim Littler & Hua Li, 2019. "Probabilistic Load Flow Algorithm of Distribution Networks with Distributed Generators and Electric Vehicles Integration," Energies, MDPI, vol. 12(22), pages 1-24, November.
    2. Soichiro Ueda & Atsushi Yona & Shriram Srinivasarangan Rangarajan & Edward Randolph Collins & Hiroshi Takahashi & Ashraf Mohamed Hemeida & Tomonobu Senjyu, 2023. "Optimal Operation of Park and Ride EV Stations in Island Operation with Model Predictive Control," Energies, MDPI, vol. 16(5), pages 1-17, March.
    3. Tiago P. Abud & Andre A. Augusto & Marcio Z. Fortes & Renan S. Maciel & Bruno S. M. C. Borba, 2022. "State of the Art Monte Carlo Method Applied to Power System Analysis with Distributed Generation," Energies, MDPI, vol. 16(1), pages 1-24, December.
    4. Felix Guthoff & Nikolai Klempp & Kai Hufendiek, 2021. "Quantification of the Flexibility Potential through Smart Charging of Battery Electric Vehicles and the Effects on the Future Electricity Supply System in Germany," Energies, MDPI, vol. 14(9), pages 1-20, April.
    5. Georgios Fotis & Christos Dikeakos & Elias Zafeiropoulos & Stylianos Pappas & Vasiliki Vita, 2022. "Scalability and Replicability for Smart Grid Innovation Projects and the Improvement of Renewable Energy Sources Exploitation: The FLEXITRANSTORE Case," Energies, MDPI, vol. 15(13), pages 1-32, June.
    6. Mike F. Voss & Steven P. Haveman & Gerrit Maarten Bonnema, 2021. "In-Company Smart Charging: Development of a Simulation Model to Facilitate a Smart EV Charging System," Energies, MDPI, vol. 14(20), pages 1-34, October.
    7. Nimalsiri, Nanduni I. & Ratnam, Elizabeth L. & Mediwaththe, Chathurika P. & Smith, David B. & Halgamuge, Saman K., 2021. "Coordinated charging and discharging control of electric vehicles to manage supply voltages in distribution networks: Assessing the customer benefit," Applied Energy, Elsevier, vol. 291(C).
    8. Quan Li & Xin Wang & Shuaiang Rong, 2018. "Probabilistic Load Flow Method Based on Modified Latin Hypercube-Important Sampling," Energies, MDPI, vol. 11(11), pages 1-14, November.
    9. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    10. Martin Spitzer & Jonas Schlund & Elpiniki Apostolaki-Iosifidou & Marco Pruckner, 2019. "Optimized Integration of Electric Vehicles in Low Voltage Distribution Grids," Energies, MDPI, vol. 12(21), pages 1-19, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Stavros Lazarou & Vasiliki Vita & Lambros Ekonomou, 2018. "Protection Schemes of Meshed Distribution Networks for Smart Grids and Electric Vehicles," Energies, MDPI, vol. 11(11), pages 1-17, November.
    2. Rayhane Koubaa & Yeliz Yoldas & Selcuk Goren & Lotfi Krichen & Ahmet Onen, 2021. "Implementation of cost benefit analysis of vehicle to grid coupled real Micro-Grid by considering battery energy wear: Practical study case," Energy & Environment, , vol. 32(7), pages 1292-1314, November.
    3. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2019. "Two-stage stochastic optimization for cost-minimal charging of electric vehicles at public charging stations with photovoltaics," Applied Energy, Elsevier, vol. 242(C), pages 769-781.
    4. Aghajani, Saemeh & Kalantar, Mohsen, 2017. "Optimal scheduling of distributed energy resources in smart grids: A complementarity approach," Energy, Elsevier, vol. 141(C), pages 2135-2144.
    5. Hu, Xu & Yang, Zhaojun & Sun, Jun & Zhang, Yali, 2021. "Sharing economy of electric vehicle private charge posts," Transportation Research Part B: Methodological, Elsevier, vol. 152(C), pages 258-275.
    6. Berjawi, A.E.H. & Walker, S.L. & Patsios, C. & Hosseini, S.H.R., 2021. "An evaluation framework for future integrated energy systems: A whole energy systems approach," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    7. Duma, Daniel & Pollitt, Michael G. & Covatariu, Andrei & Giulietti, Monica, 2024. "Defining and measuring active distribution system operators for the electricity and natural gas sectors," Utilities Policy, Elsevier, vol. 87(C).
    8. Bergaentzle, Claire & Gunkel, Philipp Andreas, 2022. "Cross-sector flexibility, storage investment and the integration of renewables: Capturing the impacts of grid tariffs," Energy Policy, Elsevier, vol. 164(C).
    9. Freitas Gomes, Icaro Silvestre & Perez, Yannick & Suomalainen, Emilia, 2020. "Coupling small batteries and PV generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 126(C).
    10. Mostafa Rezaeimozafar & Mohsen Eskandari & Mohammad Hadi Amini & Mohammad Hasan Moradi & Pierluigi Siano, 2020. "A Bi-Layer Multi-Objective Techno-Economical Optimization Model for Optimal Integration of Distributed Energy Resources into Smart/Micro Grids," Energies, MDPI, vol. 13(7), pages 1-25, April.
    11. Kayhan Alamatsaz & Sadam Hussain & Chunyan Lai & Ursula Eicker, 2022. "Electric Bus Scheduling and Timetabling, Fast Charging Infrastructure Planning, and Their Impact on the Grid: A Review," Energies, MDPI, vol. 15(21), pages 1-39, October.
    12. Seddig, Katrin & Jochem, Patrick & Fichtner, Wolf, 2017. "Integrating renewable energy sources by electric vehicle fleets under uncertainty," Energy, Elsevier, vol. 141(C), pages 2145-2153.
    13. Li, Pengfei & Hu, Weihao & Xu, Xiao & Huang, Qi & Liu, Zhou & Chen, Zhe, 2019. "A frequency control strategy of electric vehicles in microgrid using virtual synchronous generator control," Energy, Elsevier, vol. 189(C).
    14. Eltoumi, Fouad M. & Becherif, Mohamed & Djerdir, Abdesslem & Ramadan, Haitham.S., 2021. "The key issues of electric vehicle charging via hybrid power sources: Techno-economic viability, analysis, and recommendations," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    15. Hoarau, Quentin & Perez, Yannick, 2019. "Network tariff design with prosumers and electromobility: Who wins, who loses?," Energy Economics, Elsevier, vol. 83(C), pages 26-39.
    16. Shen, Zuo-Jun Max & Feng, Bo & Mao, Chao & Ran, Lun, 2019. "Optimization models for electric vehicle service operations: A literature review," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 462-477.
    17. Zhou, Yuekuan & Cao, Sunliang & Hensen, Jan L.M. & Lund, Peter D., 2019. "Energy integration and interaction between buildings and vehicles: A state-of-the-art review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    18. Hoarau, Quentin & Perez, Yannick, 2018. "Interactions between electric mobility and photovoltaic generation: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 94(C), pages 510-522.
    19. Gonzalez Venegas, Felipe & Petit, Marc & Perez, Yannick, 2021. "Active integration of electric vehicles into distribution grids: Barriers and frameworks for flexibility services," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    20. David Borge-Diez & Pedro Miguel Ortega-Cabezas & Antonio Colmenar-Santos & Jorge Juan Blanes-Peiró, 2021. "Contribution of Driving Efficiency to Vehicle-to-Building," Energies, MDPI, vol. 14(12), pages 1-30, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:9:p:2400-:d:169165. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.