IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v10y2017i12p2111-d122682.html
   My bibliography  Save this article

Chance-Constrained Real-Time Dispatch with Renewable Uncertainty Based on Dynamic Load Flow

Author

Listed:
  • Pei Bie

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Buhan Zhang

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Hang Li

    (School of Electrical and Electronic Engineering, Huazhong University of Science and Technology, Wuhan 430074, China)

  • Yong Wang

    (Guangzhou Power Supply Co., Ltd., Guangzhou 510000, China)

  • Le Luan

    (Guangzhou Power Supply Co., Ltd., Guangzhou 510000, China)

  • Guoyan Chen

    (Guangzhou Power Supply Co., Ltd., Guangzhou 510000, China)

  • Guojun Lu

    (Guangzhou Power Supply Co., Ltd., Guangzhou 510000, China)

Abstract

In this paper, a comprehensive real-time dispatch model considering renewable uncertainty based on dynamic load flow (DLF) is proposed. Through DLF, the primary and secondary frequency regulation amount caused by the variation of renewable energy as well as the line flow when primary and secondary regulation are deployed can be obtained easily. Not only the frequency constraints, but also the regular constraints like generator production limits and line flow limits are respected under both primary and secondary frequency regulation. To solve the dispatch problem with renewable uncertainty, chance-constrained programming based on cumulants and Cornish-fisher expansions (CCP-CMCF) is adopted to get the probability of holding the chance constraints and then the real-time dispatch model can be transformed into a quadratic programming. The simulation results show that the dispatch model proposed in this paper can deal with both primary and secondary regulation well and has a fast computation speed.

Suggested Citation

  • Pei Bie & Buhan Zhang & Hang Li & Yong Wang & Le Luan & Guoyan Chen & Guojun Lu, 2017. "Chance-Constrained Real-Time Dispatch with Renewable Uncertainty Based on Dynamic Load Flow," Energies, MDPI, vol. 10(12), pages 1-20, December.
  • Handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2111-:d:122682
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/10/12/2111/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/10/12/2111/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Yanzhe Hu & Yang Li & Mengjie Xu & Li Zhou & Mingjian Cui, 2017. "A Chance-Constrained Economic Dispatch Model in Wind-Thermal-Energy Storage System," Energies, MDPI, vol. 10(3), pages 1-21, March.
    2. Jun Liu & Xudong Hao & Peifen Cheng & Wanliang Fang & Shuanbao Niu, 2016. "A Parallel Probabilistic Load Flow Method Considering Nodal Correlations," Energies, MDPI, vol. 9(12), pages 1-16, December.
    3. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Yue Cao & Tao Li & Tianyu He & Yuwei Wei & Ming Li & Fengqi Si, 2022. "Multiobjective Load Dispatch for Coal-Fired Power Plants under Renewable-Energy Accommodation Based on a Nondominated-Sorting Grey Wolf Optimizer Algorithm," Energies, MDPI, vol. 15(8), pages 1-19, April.
    2. Bowen Zhou & Xiao Yang & Dongsheng Yang & Zhile Yang & Tim Littler & Hua Li, 2019. "Probabilistic Load Flow Algorithm of Distribution Networks with Distributed Generators and Electric Vehicles Integration," Energies, MDPI, vol. 12(22), pages 1-24, November.
    3. Emanuele Ciapessoni & Diego Cirio & Francesco Conte & Andrea Pitto & Stefano Massucco & Matteo Saviozzi, 2023. "Probabilistic Security-Constrained Preventive Control under Forecast Uncertainties Including Volt/Var Constraints," Energies, MDPI, vol. 16(4), pages 1-26, February.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Qais Alsafasfeh & Omar A. Saraereh & Imran Khan & Sunghwan Kim, 2019. "Solar PV Grid Power Flow Analysis," Sustainability, MDPI, vol. 11(6), pages 1-25, March.
    2. Xiaoyang Deng & Jinghan He & Pei Zhang, 2017. "A Novel Probabilistic Optimal Power Flow Method to Handle Large Fluctuations of Stochastic Variables," Energies, MDPI, vol. 10(10), pages 1-21, October.
    3. Zheng, Lingwei & Wu, Hao & Guo, Siqi & Sun, Xinyu, 2023. "Real-time dispatch of an integrated energy system based on multi-stage reinforcement learning with an improved action-choosing strategy," Energy, Elsevier, vol. 277(C).
    4. Yue Chen & Zhizhong Guo & Hongbo Li & Yi Yang & Abebe Tilahun Tadie & Guizhong Wang & Yingwei Hou, 2020. "Probabilistic Optimal Power Flow for Day-Ahead Dispatching of Power Systems with High-Proportion Renewable Power Sources," Sustainability, MDPI, vol. 12(2), pages 1-19, January.
    5. Jérôme Buire & Frédéric Colas & Jean-Yves Dieulot & Xavier Guillaud, 2019. "Stochastic Optimization of PQ Powers at the Interface between Distribution and Transmission Grids," Energies, MDPI, vol. 12(21), pages 1-16, October.
    6. Jianfeng Li & Dongxiao Niu & Ming Wu & Yongli Wang & Fang Li & Huanran Dong, 2018. "Research on Battery Energy Storage as Backup Power in the Operation Optimization of a Regional Integrated Energy System," Energies, MDPI, vol. 11(11), pages 1-20, November.
    7. Sirote Khunkitti & Apirat Siritaratiwat & Suttichai Premrudeepreechacharn & Rongrit Chatthaworn & Neville R. Watson, 2018. "A Hybrid DA-PSO Optimization Algorithm for Multiobjective Optimal Power Flow Problems," Energies, MDPI, vol. 11(9), pages 1-21, August.
    8. Gang Zhou & Jianxun Shi & Bingjing Chen & Zhongyi Qi & Licheng Wang, 2023. "Risk Assessment of Power Supply Security Considering Optimal Load Shedding in Extreme Precipitation Scenarios," Energies, MDPI, vol. 16(18), pages 1-17, September.
    9. Motaeb Eid Alshammari & Makbul A. M. Ramli & Ibrahim M. Mehedi, 2020. "An Elitist Multi-Objective Particle Swarm Optimization Algorithm for Sustainable Dynamic Economic Emission Dispatch Integrating Wind Farms," Sustainability, MDPI, vol. 12(18), pages 1-15, September.
    10. Wei-Tzer Huang & Kai-Chao Yao & Ming-Ku Chen & Feng-Ying Wang & Cang-Hui Zhu & Yung-Ruei Chang & Yih-Der Lee & Yuan-Hsiang Ho, 2018. "Derivation and Application of a New Transmission Loss Formula for Power System Economic Dispatch," Energies, MDPI, vol. 11(2), pages 1-19, February.
    11. Yongli Wang & Haiyang Yu & Mingyue Yong & Yujing Huang & Fuli Zhang & Xiaohai Wang, 2018. "Optimal Scheduling of Integrated Energy Systems with Combined Heat and Power Generation, Photovoltaic and Energy Storage Considering Battery Lifetime Loss," Energies, MDPI, vol. 11(7), pages 1-21, June.
    12. Xuexia Zhang & Zhiqi Guo & Weirong Chen, 2017. "Probabilistic Power Flow Method Considering Continuous and Discrete Variables," Energies, MDPI, vol. 10(5), pages 1-17, April.
    13. Ziqiang Zhou & Fei Tang & Dichen Liu & Chenxu Wang & Xin Gao, 2020. "Probabilistic Assessment of Distribution Network with High Penetration of Distributed Generators," Sustainability, MDPI, vol. 12(5), pages 1-20, February.
    14. Yangwu Shen & Mingjian Cui & Qin Wang & Feifan Shen & Bin Zhang & Liqing Liang, 2017. "Comprehensive Reactive Power Support of DFIG Adapted to Different Depth of Voltage Sags," Energies, MDPI, vol. 10(6), pages 1-20, June.
    15. Aliyu Hassan & Yskandar Hamam & Josiah L. Munda, 2019. "Minimizing the Impact of Intermittent Wind Power on Multiperiod Power System Operation with Pumped Hydro Generation," Energies, MDPI, vol. 12(18), pages 1-22, September.
    16. Jordehi, A. Rezaee, 2018. "How to deal with uncertainties in electric power systems? A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 145-155.
    17. Chen, Zhang & Liu, Jun & Liu, Xinglei, 2022. "GPU accelerated power flow calculation of integrated electricity and heat system with component-oriented modeling of district heating network," Applied Energy, Elsevier, vol. 305(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2111-:d:122682. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.