IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i7p1705-d155502.html
   My bibliography  Save this article

Optimal Design of Power-Split HEVs Based on Total Cost of Ownership and CO 2 Emission Minimization

Author

Listed:
  • Roberto Finesso

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Daniela Misul

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Ezio Spessa

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

  • Mattia Venditti

    (Department of Energy, Politecnico di Torino, Corso Duca degli Abruzzi 24, 10129 Torino, Italy)

Abstract

An optimal design toolbox for hybrid electric vehicles has been developed and applied to three different vehicle segments (a compact vehicle, a small SUV and a medium-size SUV) for two separate power-split hybrid layouts, both equipped with a diesel engine. One layout features a ( 3gTR ) whereas the other lacks of the additional 3-gear transmission. The toolbox combines the optimization of the vehicle design to that of the control strategy and is based on the minimization of the total cost of ownership (TCO) over the vehicle lifetime. The tool still retains the capability of complying with different performance and emission constraints. The identified optimal designs have proved to lead to a reduction of the CO 2 emissions by 50 to 55% and to a reduction of the TCO by 9 to 10% if compared to the conventional vehicle. Such results held for all classes of vehicle. A cost-benefit analysis and a break-even analysis have also been carried out. A mileage of 20,000 km/year over an urban driving scenario has turned out to possibly allow the driver to break even in about four years for the SUVs and in about six years for the compact vehicle. Finally, a linear correlation between the TCO and the specifications of the design components has been detected with a mean percentage error of about 0.1%. Such a correlation can be very helpful for vehicle design tasks.

Suggested Citation

  • Roberto Finesso & Daniela Misul & Ezio Spessa & Mattia Venditti, 2018. "Optimal Design of Power-Split HEVs Based on Total Cost of Ownership and CO 2 Emission Minimization," Energies, MDPI, vol. 11(7), pages 1-28, July.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1705-:d:155502
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/7/1705/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/7/1705/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zhang, Shaojun & Wu, Ye & Liu, Huan & Huang, Ruikun & Yang, Liuhanzi & Li, Zhenhua & Fu, Lixin & Hao, Jiming, 2014. "Real-world fuel consumption and CO2 emissions of urban public buses in Beijing," Applied Energy, Elsevier, vol. 113(C), pages 1645-1655.
    2. Fuad Un-Noor & Sanjeevikumar Padmanaban & Lucian Mihet-Popa & Mohammad Nurunnabi Mollah & Eklas Hossain, 2017. "A Comprehensive Study of Key Electric Vehicle (EV) Components, Technologies, Challenges, Impacts, and Future Direction of Development," Energies, MDPI, vol. 10(8), pages 1-84, August.
    3. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
    4. Wu, Xing & Dong, Jing & Lin, Zhenhong, 2014. "Cost analysis of plug-in hybrid electric vehicles using GPS-based longitudinal travel data," Energy Policy, Elsevier, vol. 68(C), pages 206-217.
    5. Hutchinson, Tim & Burgess, Stuart & Herrmann, Guido, 2014. "Current hybrid-electric powertrain architectures: Applying empirical design data to life cycle assessment and whole-life cost analysis," Applied Energy, Elsevier, vol. 119(C), pages 314-329.
    6. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    7. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    8. Dimitrova, Zlatina & Maréchal, François, 2015. "Techno-economic design of hybrid electric vehicles using multi objective optimization techniques," Energy, Elsevier, vol. 91(C), pages 630-644.
    9. Saxena, Samveg & Phadke, Amol & Gopal, Anand, 2014. "Understanding the fuel savings potential from deploying hybrid cars in China," Applied Energy, Elsevier, vol. 113(C), pages 1127-1133.
    10. Delucchi, Mark & Burke, Andy & Lipman, Timothy & Miller, Marshall, 2000. "Electric and Gasoline Vehicle Lifecycle Cost and Energy-Use Model," Institute of Transportation Studies, Working Paper Series qt1np1h2zp, Institute of Transportation Studies, UC Davis.
    11. Damiani, Lorenzo & Repetto, Matteo & Prato, Alessandro Pini, 2014. "Improvement of powertrain efficiency through energy breakdown analysis," Applied Energy, Elsevier, vol. 121(C), pages 252-263.
    12. David Huang, K. & Quang, Khong Vu & Tseng, Kuo-Tung, 2009. "Study of the effect of contraction of cross-sectional area on flow energy merger in hybrid pneumatic power system," Applied Energy, Elsevier, vol. 86(10), pages 2171-2182, October.
    13. Wu, Xiaolan & Cao, Binggang & Li, Xueyan & Xu, Jun & Ren, Xiaolong, 2011. "Component sizing optimization of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 88(3), pages 799-804, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Maino, Claudio & Misul, Daniela & Musa, Alessia & Spessa, Ezio, 2021. "Optimal mesh discretization of the dynamic programming for hybrid electric vehicles," Applied Energy, Elsevier, vol. 292(C).
    2. Fabio Cococcetta & Roberto Finesso & Gilles Hardy & Omar Marello & Ezio Spessa, 2019. "Implementation and Assessment of a Model-Based Controller of Torque and Nitrogen Oxide Emissions in an 11 L Heavy-Duty Diesel Engine," Energies, MDPI, vol. 12(24), pages 1-19, December.
    3. Massimiliano Passalacqua & Mauro Carpita & Serge Gavin & Mario Marchesoni & Matteo Repetto & Luis Vaccaro & Sébastien Wasterlain, 2019. "Supercapacitor Storage Sizing Analysis for a Series Hybrid Vehicle," Energies, MDPI, vol. 12(9), pages 1-15, May.
    4. Bao, Shuyue & Sun, Ping & Zhu, Jianxin & Ji, Qian & Liu, Junheng, 2022. "Improved multi-dimensional dynamic programming energy management strategy for a vehicle power-split hybrid powertrain," Energy, Elsevier, vol. 256(C).
    5. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    6. Roberto Finesso & Gilles Hardy & Alessandro Mancarella & Omar Marello & Antonio Mittica & Ezio Spessa, 2019. "Real-Time Simulation of Torque and Nitrogen Oxide Emissions in an 11.0 L Heavy-Duty Diesel Engine for Model-Based Combustion Control," Energies, MDPI, vol. 12(3), pages 1-32, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
    2. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    3. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    4. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    5. Hou, Daizheng & Sun, Qun & Bao, Chunjiang & Cheng, Xingqun & Guo, Hongqiang & Zhao, Ying, 2019. "An all-in-one design method for plug-in hybrid electric buses considering uncertain factor of driving cycles," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Zhang, Shaojun & Wu, Ye & Hu, Jingnan & Huang, Ruikun & Zhou, Yu & Bao, Xiaofeng & Fu, Lixin & Hao, Jiming, 2014. "Can Euro V heavy-duty diesel engines, diesel hybrid and alternative fuel technologies mitigate NOX emissions? New evidence from on-road tests of buses in China," Applied Energy, Elsevier, vol. 132(C), pages 118-126.
    7. Vamsi Krishna Reddy, Aala Kalananda & Venkata Lakshmi Narayana, Komanapalli, 2022. "Meta-heuristics optimization in electric vehicles -an extensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 160(C).
    8. Dimitrova, Zlatina & Maréchal, François, 2015. "Techno-economic design of hybrid electric vehicles using multi objective optimization techniques," Energy, Elsevier, vol. 91(C), pages 630-644.
    9. Zhang, Shaojun & Wu, Ye & Un, Puikei & Fu, Lixin & Hao, Jiming, 2016. "Modeling real-world fuel consumption and carbon dioxide emissions with high resolution for light-duty passenger vehicles in a traffic populated city," Energy, Elsevier, vol. 113(C), pages 461-471.
    10. Guo, Hongqiang & Sun, Qun & Wang, Chong & Wang, Qinpu & Lu, Silong, 2018. "A systematic design and optimization method of transmission system and power management for a plug-in hybrid electric vehicle," Energy, Elsevier, vol. 148(C), pages 1006-1017.
    11. Sun, Li & Walker, Paul & Feng, Kaiwu & Zhang, Nong, 2018. "Multi-objective component sizing for a battery-supercapacitor power supply considering the use of a power converter," Energy, Elsevier, vol. 142(C), pages 436-446.
    12. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    13. Zhou, Quan & Zhang, Wei & Cash, Scott & Olatunbosun, Oluremi & Xu, Hongming & Lu, Guoxiang, 2017. "Intelligent sizing of a series hybrid electric power-train system based on Chaos-enhanced accelerated particle swarm optimization," Applied Energy, Elsevier, vol. 189(C), pages 588-601.
    14. Briggs, Ian & Murtagh, Martin & Kee, Robert & McCulloug, Geoffrey & Douglas, Roy, 2017. "Sustainable non-automotive vehicles: The simulation challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P2), pages 840-851.
    15. Liu, Liwei & Zong, Haijing & Zhao, Erdong & Chen, Chuxiang & Wang, Jianzhou, 2014. "Can China realize its carbon emission reduction goal in 2020: From the perspective of thermal power development," Applied Energy, Elsevier, vol. 124(C), pages 199-212.
    16. Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
    17. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    18. Björnsson, Lars-Henrik & Karlsson, Sten, 2016. "The potential for brake energy regeneration under Swedish conditions," Applied Energy, Elsevier, vol. 168(C), pages 75-84.
    19. Dimitrova, Zlatina & Maréchal, François, 2015. "Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains," Energy, Elsevier, vol. 83(C), pages 539-550.
    20. Guo, Jiadong & Ge, Yunshan & Hao, Lijun & Tan, Jianwei & Peng, Zihang & Zhang, Chuanzhen, 2015. "Comparison of real-world fuel economy and emissions from parallel hybrid and conventional diesel buses fitted with selective catalytic reduction systems," Applied Energy, Elsevier, vol. 159(C), pages 433-441.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:7:p:1705-:d:155502. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.