IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v272y2020ics0306261920307030.html
   My bibliography  Save this article

Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion

Author

Listed:
  • García, Antonio
  • Carlucci, Paolo
  • Monsalve-Serrano, Javier
  • Valletta, Andrea
  • Martínez-Boggio, Santiago

Abstract

Reactivity Controlled Compression Ignition combustion technology potentials are well known for the capability to drastically reduce the engine-out nitrogen oxides and soot emissions simultaneously. Its implementation in mid-term low-duty diesel engines can be beneficial to meet the upcoming regulations. To explore the potential of this solution, experimental data are used from a compression ignition 1.9 L engine, which is operated under two combustion-modes: Reactivity Controlled Compression Ignition and conventional diesel combustion. Meanwhile, also the carbon dioxide emissions limitations must be fulfilled. To achieve this goal, the benefits associated to powertrain electrification in terms of fuel economy, can be joined with the benefits of RCCI combustion. To do so, two different supervisory control strategies are compared: Adaptive Equivalent Minimization Control Strategy and Rule-Based Control strategy, while dynamic programming is used to size the electric grid of the powertrain to provide the best optimal solution in terms of fuel economy and emissions abatement. The analysis of the designed hybrid powertrain is carried out numerically with GT-Suite and Matlab-Simulink software. The results show a great potential of the parallel full-hybrid electric vehicle powertrain equipped with the dual-mode engine to reduce the engine-out emissions, also to increase fuel economy with respect to the homologation fuel consumption of the baseline vehicle. The optimal supervisory control strategy was found to be the emissions-oriented Adaptive Equivalent Minimization Control Strategy, which scores a simultaneous reduction of 12% in fuel consumption, 75% in engine-out nitrogen oxides emissions and 82% in engine-out soot, with respect to the baseline conventional diesel combustion engine vehicle.

Suggested Citation

  • García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2020. "Energy management strategies comparison for a parallel full hybrid electric vehicle using Reactivity Controlled Compression Ignition combustion," Applied Energy, Elsevier, vol. 272(C).
  • Handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307030
    DOI: 10.1016/j.apenergy.2020.115191
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261920307030
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2020.115191?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. He, Yinglong & Wang, Chongming & Zhou, Quan & Li, Ji & Makridis, Michail & Williams, Huw & Lu, Guoxiang & Xu, Hongming, 2020. "Multiobjective component sizing of a hybrid ethanol-electric vehicle propulsion system," Applied Energy, Elsevier, vol. 266(C).
    2. Hofmann, Jana & Guan, Dabo & Chalvatzis, Konstantinos & Huo, Hong, 2016. "Assessment of electrical vehicles as a successful driver for reducing CO2 emissions in China," Applied Energy, Elsevier, vol. 184(C), pages 995-1003.
    3. Lei, Zhenzhen & Qin, Datong & Hou, Liliang & Peng, Jingyu & Liu, Yonggang & Chen, Zheng, 2020. "An adaptive equivalent consumption minimization strategy for plug-in hybrid electric vehicles based on traffic information," Energy, Elsevier, vol. 190(C).
    4. Palmer, Kate & Tate, James E. & Wadud, Zia & Nellthorp, John, 2018. "Total cost of ownership and market share for hybrid and electric vehicles in the UK, US and Japan," Applied Energy, Elsevier, vol. 209(C), pages 108-119.
    5. Qin, Zhaobo & Luo, Yugong & Zhuang, Weichao & Pan, Ziheng & Li, Keqiang & Peng, Huei, 2018. "Simultaneous optimization of topology, control and size for multi-mode hybrid tracked vehicles," Applied Energy, Elsevier, vol. 212(C), pages 1627-1641.
    6. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
    7. Shabbir, Wassif & Evangelou, Simos A., 2019. "Threshold-changing control strategy for series hybrid electric vehicles," Applied Energy, Elsevier, vol. 235(C), pages 761-775.
    8. Wu, Ziyang & Wang, Can & Wolfram, Paul & Zhang, Yaxin & Sun, Xin & Hertwich, Edgar, 2019. "Assessing electric vehicle policy with region-specific carbon footprints," Applied Energy, Elsevier, vol. 256(C).
    9. Tobias Nüesch & Alberto Cerofolini & Giorgio Mancini & Nicolò Cavina & Christopher Onder & Lino Guzzella, 2014. "Equivalent Consumption Minimization Strategy for the Control of Real Driving NOx Emissions of a Diesel Hybrid Electric Vehicle," Energies, MDPI, vol. 7(5), pages 1-31, May.
    10. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    11. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    12. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Serrano, José Ramón & García, Antonio & Monsalve-Serrano, Javier & Martínez-Boggio, Santiago, 2021. "High efficiency two stroke opposed piston engine for plug-in hybrid electric vehicle applications: Evaluation under homologation and real driving conditions," Applied Energy, Elsevier, vol. 282(PA).
    2. Ke Song & Yimin Wang & Cancan An & Hongjie Xu & Yuhang Ding, 2021. "Design and Validation of Energy Management Strategy for Extended-Range Fuel Cell Electric Vehicle Using Bond Graph Method," Energies, MDPI, vol. 14(2), pages 1-31, January.
    3. Zhang, Hao & Chen, Boli & Lei, Nuo & Li, Bingbing & Chen, Chaoyi & Wang, Zhi, 2024. "Coupled velocity and energy management optimization of connected hybrid electric vehicles for maximum collective efficiency," Applied Energy, Elsevier, vol. 360(C).
    4. Penghui Qiang & Peng Wu & Tao Pan & Huaiquan Zang, 2022. "Real-Time Energy Management Strategy Based on Driving Conditions Using a Feature Fusion Extreme Learning Machine," Energies, MDPI, vol. 15(12), pages 1-22, June.
    5. Wang, Yaxin & Lou, Diming & Xu, Ning & Fang, Liang & Tan, Piqiang, 2021. "Energy management and emission control for range extended electric vehicles," Energy, Elsevier, vol. 236(C).
    6. Zhang, Hao & Fan, Qinhao & Liu, Shang & Li, Shengbo Eben & Huang, Jin & Wang, Zhi, 2021. "Hierarchical energy management strategy for plug-in hybrid electric powertrain integrated with dual-mode combustion engine," Applied Energy, Elsevier, vol. 304(C).
    7. Cui, Wei & Cui, Naxin & Li, Tao & Cui, Zhongrui & Du, Yi & Zhang, Chenghui, 2022. "An efficient multi-objective hierarchical energy management strategy for plug-in hybrid electric vehicle in connected scenario," Energy, Elsevier, vol. 257(C).
    8. Wei, Changyin & Chen, Yong & Li, Xiaoyu & Lin, Xiaozhe, 2022. "Integrating intelligent driving pattern recognition with adaptive energy management strategy for extender range electric logistics vehicle," Energy, Elsevier, vol. 247(C).
    9. Zhang, Hao & Liu, Shang & Lei, Nuo & Fan, Qinhao & Wang, Zhi, 2022. "Leveraging the benefits of ethanol-fueled advanced combustion and supervisory control optimization in hybrid biofuel-electric vehicles," Applied Energy, Elsevier, vol. 326(C).
    10. García, Antonio & Carlucci, Paolo & Monsalve-Serrano, Javier & Valletta, Andrea & Martínez-Boggio, Santiago, 2021. "Energy management optimization for a power-split hybrid in a dual-mode RCCI-CDC engine," Applied Energy, Elsevier, vol. 302(C).
    11. Wei, Changyin & Sun, Xiuxiu & Chen, Yong & Zang, Libin & Bai, Shujie, 2021. "Comparison of architecture and adaptive energy management strategy for plug-in hybrid electric logistics vehicle," Energy, Elsevier, vol. 230(C).
    12. He, Hongwen & Meng, Xiangfei & Wang, Yong & Khajepour, Amir & An, Xiaowen & Wang, Renguang & Sun, Fengchun, 2024. "Deep reinforcement learning based energy management strategies for electrified vehicles: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    13. Paykani, Amin & Garcia, Antonio & Shahbakhti, Mahdi & Rahnama, Pourya & Reitz, Rolf D., 2021. "Reactivity controlled compression ignition engine: Pathways towards commercial viability," Applied Energy, Elsevier, vol. 282(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Anselma, Pier Giuseppe & Biswas, Atriya & Belingardi, Giovanni & Emadi, Ali, 2020. "Rapid assessment of the fuel economy capability of parallel and series-parallel hybrid electric vehicles," Applied Energy, Elsevier, vol. 275(C).
    2. Anselma, Pier Giuseppe, 2022. "Electrified powertrain sizing for vehicle fleets of car makers considering total ownership costs and CO2 emission legislation scenarios," Applied Energy, Elsevier, vol. 314(C).
    3. Anselma, Pier Giuseppe, 2022. "Computationally efficient evaluation of fuel and electrical energy economy of plug-in hybrid electric vehicles with smooth driving constraints," Applied Energy, Elsevier, vol. 307(C).
    4. Caiyang Wei & Theo Hofman & Esin Ilhan Caarls & Rokus van Iperen, 2020. "A Review of the Integrated Design and Control of Electrified Vehicles," Energies, MDPI, vol. 13(20), pages 1-31, October.
    5. Chen, Z. & Liu, Y. & Ye, M. & Zhang, Y. & Chen, Z. & Li, G., 2021. "A survey on key techniques and development perspectives of equivalent consumption minimisation strategy for hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 151(C).
    6. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Emissions reduction by using e-components in 48 V mild hybrid trucks under dual-mode dual-fuel combustion," Applied Energy, Elsevier, vol. 299(C).
    7. Shi, Lei & Wu, Rongxin & Lin, Boqiang, 2023. "Where will go for electric vehicles in China after the government subsidy incentives are abolished? A controversial consumer perspective," Energy, Elsevier, vol. 262(PA).
    8. Kandidayeni, M. & Macias, A. & Boulon, L. & Kelouwani, S., 2020. "Investigating the impact of ageing and thermal management of a fuel cell system on energy management strategies," Applied Energy, Elsevier, vol. 274(C).
    9. Lin, Boqiang & Shi, Lei, 2022. "Do environmental quality and policy changes affect the evolution of consumers’ intentions to buy new energy vehicles," Applied Energy, Elsevier, vol. 310(C).
    10. Zhuang, Weichao & Li, Jinhui & Ju, Fei & Li, Bingbing & Liu, Haoji & Yin, Guodong, 2024. "Dual-objective eco-routing strategy for vehicles with different powertrain types," Energy, Elsevier, vol. 293(C).
    11. Maino, Claudio & Misul, Daniela & Musa, Alessia & Spessa, Ezio, 2021. "Optimal mesh discretization of the dynamic programming for hybrid electric vehicles," Applied Energy, Elsevier, vol. 292(C).
    12. Zhou, Yang & Ravey, Alexandre & Péra, Marie-Cecile, 2020. "Multi-mode predictive energy management for fuel cell hybrid electric vehicles using Markov driving pattern recognizer," Applied Energy, Elsevier, vol. 258(C).
    13. Zhou, Xingyu & Sun, Chao & Sun, Fengchun & Zhang, Chuntao, 2023. "Commuting-pattern-oriented stochastic optimization of electric powertrains for revealing contributions of topology modifications to the powertrain energy efficiency," Applied Energy, Elsevier, vol. 344(C).
    14. Balali, Yasaman & Stegen, Sascha, 2021. "Review of energy storage systems for vehicles based on technology, environmental impacts, and costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    15. Cipek, Mihael & Kasać, Josip & Pavković, Danijel & Zorc, Davor, 2020. "A novel cascade approach to control variables optimisation for advanced series-parallel hybrid electric vehicle power-train," Applied Energy, Elsevier, vol. 276(C).
    16. Huijun Yue & Jinyu Lin & Peng Dong & Zhinan Chen & Xiangyang Xu, 2023. "Configurations and Control Strategies of Hybrid Powertrain Systems," Energies, MDPI, vol. 16(2), pages 1-18, January.
    17. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    18. García, Antonio & Monsalve-Serrano, Javier & Martinez-Boggio, Santiago & Gaillard, Patrick, 2021. "Impact of the hybrid electric architecture on the performance and emissions of a delivery truck with a dual-fuel RCCI engine," Applied Energy, Elsevier, vol. 301(C).
    19. Zhuang, Weichao & Li (Eben), Shengbo & Zhang, Xiaowu & Kum, Dongsuk & Song, Ziyou & Yin, Guodong & Ju, Fei, 2020. "A survey of powertrain configuration studies on hybrid electric vehicles," Applied Energy, Elsevier, vol. 262(C).
    20. Chen, Shuang & Hu, Minghui & Lei, Yanlei & Kong, Linghao, 2023. "Novel hybrid power system and energy management strategy for locomotives," Applied Energy, Elsevier, vol. 348(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:272:y:2020:i:c:s0306261920307030. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.