IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v88y2011i3p799-804.html
   My bibliography  Save this article

Component sizing optimization of plug-in hybrid electric vehicles

Author

Listed:
  • Wu, Xiaolan
  • Cao, Binggang
  • Li, Xueyan
  • Xu, Jun
  • Ren, Xiaolong

Abstract

Plug-in hybrid electric vehicles (PHEVs) are considered as one of the most promising means to improve the near-term sustainability of the transportation and stationary energy sectors. This paper describes a methodology for the optimization of PHEVs component sizing using parallel chaos optimization algorithm (PCOA). In this approach, the objective function is defined so as to minimize the drivetrain cost. In addition, the driving performance requirements are considered as constraints. Finally, the optimization process is performed over three different all electric range (AER) and two types of batteries. The results from computer simulation show the effectiveness of the approach and the reduction in drivetrian cost while ensuring the vehicle performance.

Suggested Citation

  • Wu, Xiaolan & Cao, Binggang & Li, Xueyan & Xu, Jun & Ren, Xiaolong, 2011. "Component sizing optimization of plug-in hybrid electric vehicles," Applied Energy, Elsevier, vol. 88(3), pages 799-804, March.
  • Handle: RePEc:eee:appene:v:88:y:2011:i:3:p:799-804
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306-2619(10)00335-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Zuo, X.Q. & Fan, Y.S., 2006. "A chaos search immune algorithm with its application to neuro-fuzzy controller design," Chaos, Solitons & Fractals, Elsevier, vol. 30(1), pages 94-109.
    2. Bradley, Thomas H. & Frank, Andrew A., 2009. "Design, demonstrations and sustainability impact assessments for plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 115-128, January.
    3. David Huang, K. & Quang, Khong Vu & Tseng, Kuo-Tung, 2009. "Study of the effect of contraction of cross-sectional area on flow energy merger in hybrid pneumatic power system," Applied Energy, Elsevier, vol. 86(10), pages 2171-2182, October.
    4. Amjad, Shaik & Neelakrishnan, S. & Rudramoorthy, R., 2010. "Review of design considerations and technological challenges for successful development and deployment of plug-in hybrid electric vehicles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 1104-1110, April.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yilmaz, Murat, 2015. "Limitations/capabilities of electric machine technologies and modeling approaches for electric motor design and analysis in plug-in electric vehicle applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 80-99.
    2. Roberto Capata, 2018. "Urban and Extra-Urban Hybrid Vehicles: A Technological Review," Energies, MDPI, vol. 11(11), pages 1-38, October.
    3. Riba, Jordi-Roger & López-Torres, Carlos & Romeral, Luís & Garcia, Antoni, 2016. "Rare-earth-free propulsion motors for electric vehicles: A technology review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 367-379.
    4. Xu, X.M. & He, R., 2014. "Review on the heat dissipation performance of battery pack with different structures and operation conditions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 301-315.
    5. Mohammad Asghari & Seyed Mohammad Javad Mirzapour Al-E-Hashem, 2021. "Green vehicle routing problem: A state-of-the-art review," Post-Print hal-03182944, HAL.
    6. Asghari, Mohammad & Mirzapour Al-e-hashem, S. Mohammad J., 2021. "Green vehicle routing problem: A state-of-the-art review," International Journal of Production Economics, Elsevier, vol. 231(C).
    7. Alegre, Susana & Míguez, Juan V. & Carpio, José, 2017. "Modelling of electric and parallel-hybrid electric vehicle using Matlab/Simulink environment and planning of charging stations through a geographic information system and genetic algorithms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 74(C), pages 1020-1027.
    8. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    9. Aghaei, Jamshid & Nezhad, Ali Esmaeel & Rabiee, Abdorreza & Rahimi, Ehsan, 2016. "Contribution of Plug-in Hybrid Electric Vehicles in power system uncertainty management," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 450-458.
    10. Das, Himadry Shekhar & Tan, Chee Wei & Yatim, A.H.M., 2017. "Fuel cell hybrid electric vehicles: A review on power conditioning units and topologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 268-291.
    11. Shiau, Ching-Shin Norman & Samaras, Constantine & Hauffe, Richard & Michalek, Jeremy J., 2009. "Impact of battery weight and charging patterns on the economic and environmental benefits of plug-in hybrid vehicles," Energy Policy, Elsevier, vol. 37(7), pages 2653-2663, July.
    12. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    13. Martínez-Lao, Juan & Montoya, Francisco G. & Montoya, Maria G. & Manzano-Agugliaro, Francisco, 2017. "Electric vehicles in Spain: An overview of charging systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 970-983.
    14. Sajjad Haider & Peter Schegner, 2020. "Heuristic Optimization of Overloading Due to Electric Vehicles in a Low Voltage Grid," Energies, MDPI, vol. 13(22), pages 1-19, November.
    15. Galus, Matthias D. & Zima, Marek & Andersson, Göran, 2010. "On integration of plug-in hybrid electric vehicles into existing power system structures," Energy Policy, Elsevier, vol. 38(11), pages 6736-6745, November.
    16. Al-Alawi, Baha M. & Bradley, Thomas H., 2013. "Review of hybrid, plug-in hybrid, and electric vehicle market modeling Studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 190-203.
    17. Lian, Renzong & Peng, Jiankun & Wu, Yuankai & Tan, Huachun & Zhang, Hailong, 2020. "Rule-interposing deep reinforcement learning based energy management strategy for power-split hybrid electric vehicle," Energy, Elsevier, vol. 197(C).
    18. Schill, Wolf-Peter, 2011. "Electric Vehicles in Imperfect Electricity Markets: The case of Germany," EconStor Open Access Articles and Book Chapters, ZBW - Leibniz Information Centre for Economics, vol. 39(10), pages 6178-6189.
    19. Andriosopoulos, Kostas & Bigerna, Simona & Bollino, Carlo Andrea & Micheli, Silvia, 2018. "The impact of age on Italian consumers' attitude toward alternative fuel vehicles," Renewable Energy, Elsevier, vol. 119(C), pages 299-308.
    20. Lena Ahmadi & Eric Croiset & Ali Elkamel & Peter L. Douglas & Woramon Unbangluang & Evgueniy Entchev, 2012. "Impact of PHEVs Penetration on Ontario’s Electricity Grid and Environmental Considerations," Energies, MDPI, vol. 5(12), pages 1-19, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:88:y:2011:i:3:p:799-804. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.