IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v178y2016icp454-467.html
   My bibliography  Save this article

Modeling, control, and performance of a novel architecture of hybrid electric powertrain system

Author

Listed:
  • Yi, Chenyu
  • Epureanu, Bogdan I.
  • Hong, Sung-Kwon
  • Ge, Tony
  • Yang, Xiao Guang

Abstract

Hybrid electric vehicles (HEVs) have become increasingly popular due to their high fuel economy performance. HEVs typically fall into three categories according to their powertrain configuration, namely serial, parallel, and power-split hybrid. All these configurations use small internal combustion engines (ICEs), which can suffer from high torque fluctuations detrimental for noise, vibration and harshness performance. This paper introduces a novel architecture of hybrid electric powertrain systems (patent pending) which suppresses torque fluctuations and carries out the functionality of hybrid driving. This new hybrid architecture conceptually lies between a serial and a power-split. The new system uses an ICE and two electric machines, including one with a rotating stator, and has the functionalities of existing hybrid powertrains, including transmission, boost, regenerative braking. The paper presents a model for this new powertrain, and a unique controller implemented in MATLAB Simulink®. A specially designed ruled-based multi-state controller is included in the model to achieve control and enhance fuel economy. Results of drive cycle simulations show the systems performance including torque fluctuation suppression and great fuel economy.

Suggested Citation

  • Yi, Chenyu & Epureanu, Bogdan I. & Hong, Sung-Kwon & Ge, Tony & Yang, Xiao Guang, 2016. "Modeling, control, and performance of a novel architecture of hybrid electric powertrain system," Applied Energy, Elsevier, vol. 178(C), pages 454-467.
  • Handle: RePEc:eee:appene:v:178:y:2016:i:c:p:454-467
    DOI: 10.1016/j.apenergy.2016.06.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916308431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bougrine, S. & Richard, S. & Michel, J.-B. & Veynante, D., 2014. "Simulation of CO and NO emissions in a SI engine using a 0D coherent flame model coupled with a tabulated chemistry approach," Applied Energy, Elsevier, vol. 113(C), pages 1199-1215.
    2. Millo, Federico & Rolando, Luciano & Fuso, Rocco & Zhao, Jianning, 2015. "Development of a new hybrid bus for urban public transportation," Applied Energy, Elsevier, vol. 157(C), pages 583-594.
    3. Ganesh Mohan & Francis Assadian & Stefano Longo, 2013. "An Optimization Framework for Comparative Analysis of Multiple Vehicle Powertrains," Energies, MDPI, vol. 6(10), pages 1-31, October.
    4. Torres, J.L. & Gonzalez, R. & Gimenez, A. & Lopez, J., 2014. "Energy management strategy for plug-in hybrid electric vehicles. A comparative study," Applied Energy, Elsevier, vol. 113(C), pages 816-824.
    5. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    6. Shabbir, Wassif & Evangelou, Simos A., 2014. "Real-time control strategy to maximize hybrid electric vehicle powertrain efficiency," Applied Energy, Elsevier, vol. 135(C), pages 512-522.
    7. Saxena, Samveg & Phadke, Amol & Gopal, Anand, 2014. "Understanding the fuel savings potential from deploying hybrid cars in China," Applied Energy, Elsevier, vol. 113(C), pages 1127-1133.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zifei Nie & Hooman Farzaneh, 2021. "Role of Model Predictive Control for Enhancing Eco-Driving of Electric Vehicles in Urban Transport System of Japan," Sustainability, MDPI, vol. 13(16), pages 1-37, August.
    2. Yuan Qiao & Yizhou Song & Kaisheng Huang, 2019. "A Novel Control Algorithm Design for Hybrid Electric Vehicles Considering Energy Consumption and Emission Performance," Energies, MDPI, vol. 12(14), pages 1-28, July.
    3. Wang, Siyang & Lin, Xianke, 2020. "Eco-driving control of connected and automated hybrid vehicles in mixed driving scenarios," Applied Energy, Elsevier, vol. 271(C).
    4. Abdul-Manan, Amir F.N. & Won, Hyun-Woo & Li, Yang & Sarathy, S. Mani & Xie, Xiaomin & Amer, Amer A., 2020. "Bridging the gap in a resource and climate-constrained world with advanced gasoline compression-ignition hybrids," Applied Energy, Elsevier, vol. 267(C).
    5. Zhang, Jin & Wang, Zhenpo & Liu, Peng & Zhang, Zhaosheng & Li, Xiaoyu & Qu, Changhui, 2019. "Driving cycles construction for electric vehicles considering road environment: A case study in Beijing," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    6. Li, Liang & Wang, Xiangyu & Xiong, Rui & He, Kai & Li, Xujian, 2016. "AMT downshifting strategy design of HEV during regenerative braking process for energy conservation," Applied Energy, Elsevier, vol. 183(C), pages 914-925.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ju, Fei & Zhuang, Weichao & Wang, Liangmo & Zhang, Zhe, 2020. "Comparison of four-wheel-drive hybrid powertrain configurations," Energy, Elsevier, vol. 209(C).
    2. Mayyas, Abdel Ra'ouf & Kumar, Sushil & Pisu, Pierluigi & Rios, Jacqueline & Jethani, Puneet, 2017. "Model-based design validation for advanced energy management strategies for electrified hybrid power trains using innovative vehicle hardware in the loop (VHIL) approach," Applied Energy, Elsevier, vol. 204(C), pages 287-302.
    3. Dimitrova, Zlatina & Maréchal, François, 2015. "Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains," Energy, Elsevier, vol. 83(C), pages 539-550.
    4. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2016. "Cost-optimized design of a dual-mode diesel parallel hybrid electric vehicle for several driving missions and market scenarios," Applied Energy, Elsevier, vol. 177(C), pages 366-383.
    5. Babu, Ajay & Ashok, S., 2015. "Improved parallel mild hybrids for urban roads," Applied Energy, Elsevier, vol. 144(C), pages 276-283.
    6. Dimitrova, Zlatina & Maréchal, François, 2015. "Techno-economic design of hybrid electric vehicles using multi objective optimization techniques," Energy, Elsevier, vol. 91(C), pages 630-644.
    7. Finesso, Roberto & Spessa, Ezio & Venditti, Mattia, 2014. "Layout design and energetic analysis of a complex diesel parallel hybrid electric vehicle," Applied Energy, Elsevier, vol. 134(C), pages 573-588.
    8. Chen, Zeyu & Xiong, Rui & Wang, Chun & Cao, Jiayi, 2017. "An on-line predictive energy management strategy for plug-in hybrid electric vehicles to counter the uncertain prediction of the driving cycle," Applied Energy, Elsevier, vol. 185(P2), pages 1663-1672.
    9. Roberto Finesso & Daniela Misul & Ezio Spessa & Mattia Venditti, 2018. "Optimal Design of Power-Split HEVs Based on Total Cost of Ownership and CO 2 Emission Minimization," Energies, MDPI, vol. 11(7), pages 1-28, July.
    10. Shaobo Xie & Xiaosong Hu & Kun Lang & Shanwei Qi & Tong Liu, 2018. "Powering Mode-Integrated Energy Management Strategy for a Plug-In Hybrid Electric Truck with an Automatic Mechanical Transmission Based on Pontryagin’s Minimum Principle," Sustainability, MDPI, vol. 10(10), pages 1-23, October.
    11. Cordiner, Stefano & Galeotti, Matteo & Mulone, Vincenzo & Nobile, Matteo & Rocco, Vittorio, 2016. "Trip-based SOC management for a plugin hybrid electric vehicle," Applied Energy, Elsevier, vol. 164(C), pages 891-905.
    12. Li Zhai & Liwen Lin & Xinyu Zhang & Chao Song, 2016. "The Effect of Distributed Parameters on Conducted EMI from DC-Fed Motor Drive Systems in Electric Vehicles," Energies, MDPI, vol. 10(1), pages 1-17, December.
    13. Saxena, Samveg & Gopal, Anand & Phadke, Amol, 2014. "Electrical consumption of two-, three- and four-wheel light-duty electric vehicles in India," Applied Energy, Elsevier, vol. 115(C), pages 582-590.
    14. Guangli Zhou & Fei Huang & Wenbing Liu & Chunling Zhao & Yangkai Xiang & Hanbing Wei, 2022. "Comprehensive Control Strategy of Fuel Consumption and Emissions Incorporating the Catalyst Temperature for PHEVs Based on DRL," Energies, MDPI, vol. 15(20), pages 1-18, October.
    15. Du, Jiuyu & Chen, Jingfu & Song, Ziyou & Gao, Mingming & Ouyang, Minggao, 2017. "Design method of a power management strategy for variable battery capacities range-extended electric vehicles to improve energy efficiency and cost-effectiveness," Energy, Elsevier, vol. 121(C), pages 32-42.
    16. Zhang, Wei & Wang, Jixin & Liu, Yong & Gao, Guangzong & Liang, Siwen & Ma, Hongfeng, 2020. "Reinforcement learning-based intelligent energy management architecture for hybrid construction machinery," Applied Energy, Elsevier, vol. 275(C).
    17. Hung, Yi-Hsuan & Tung, Yu-Ming & Chang, Chun-Hsin, 2016. "Optimal control of integrated energy management/mode switch timing in a three-power-source hybrid powertrain," Applied Energy, Elsevier, vol. 173(C), pages 184-196.
    18. Miranda, Matheus H.R. & Silva, Fabrício L. & Lourenço, Maria A.M. & Eckert, Jony J. & Silva, Ludmila C.A., 2022. "Vehicle drivetrain and fuzzy controller optimization using a planar dynamics simulation based on a real-world driving cycle," Energy, Elsevier, vol. 257(C).
    19. Wu, Yuankai & Tan, Huachun & Peng, Jiankun & Zhang, Hailong & He, Hongwen, 2019. "Deep reinforcement learning of energy management with continuous control strategy and traffic information for a series-parallel plug-in hybrid electric bus," Applied Energy, Elsevier, vol. 247(C), pages 454-466.
    20. Saxena, Samveg & MacDonald, Jason & Moura, Scott, 2015. "Charging ahead on the transition to electric vehicles with standard 120V wall outlets," Applied Energy, Elsevier, vol. 157(C), pages 720-728.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:178:y:2016:i:c:p:454-467. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.