IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i11p233-d281519.html
   My bibliography  Save this article

Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard

Author

Listed:
  • Alexandros Sotirios Anifantis

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Salvatore Camposeo

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Gaetano Alessandro Vivaldi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Francesco Santoro

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

Abstract

A comparison of three different methods to evaluate the tree row volume (TRV) of a super-high-density olive orchard is presented in this article. The purpose was to validate the suitability of unmanned aerial vehicle (UAV) photogrammetry and 3D modeling techniques with respect to manual and traditional methods of TRV detection. The use of UAV photogrammetry can reduce the amount of estimated biomass and, therefore, reduce the volume of pesticides to be used in the field by means of more accurate prescription maps. The presented comparison of methodologies was performed on an adult super-high-density olive orchard, planted with a density of 1660 trees per hectare. The first method (TRV 1 ) was based on close-range photogrammetry from UAVs, the second (TRV 2 ) was based on manual in situ measurements, and the third (TRV 3 ) was based on a formula from the literature. The comparisons of TRV 2 -TRV 1 and TRV 3 -TRV 1 showed an average value of the difference equal to +13% (max: +65%; min: −11%) and +24% (max: +58%; min: +5%), respectively. The results show that the TRV 1 method has high accuracy in predicting TRV with minor working time expenditure, and the only limitation is that professionally skilled personnel is required.

Suggested Citation

  • Alexandros Sotirios Anifantis & Salvatore Camposeo & Gaetano Alessandro Vivaldi & Francesco Santoro & Simone Pascuzzi, 2019. "Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard," Agriculture, MDPI, vol. 9(11), pages 1-14, October.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:11:p:233-:d:281519
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/11/233/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/11/233/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ezenne, G.I. & Jupp, Louise & Mantel, S.K. & Tanner, J.L., 2019. "Current and potential capabilities of UAS for crop water productivity in precision agriculture," Agricultural Water Management, Elsevier, vol. 218(C), pages 158-164.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    3. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    4. Gabriel G. R. de Castro & Guido S. Berger & Alvaro Cantieri & Marco Teixeira & José Lima & Ana I. Pereira & Milena F. Pinto, 2023. "Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs," Agriculture, MDPI, vol. 13(2), pages 1-25, January.
    5. Salvatore Camposeo & Gaetano Alessandro Vivaldi & Giovanni Russo & Francesca Maria Melucci, 2022. "Intensification in Olive Growing Reduces Global Warming Potential under Both Integrated and Organic Farming," Sustainability, MDPI, vol. 14(11), pages 1-19, May.
    6. Riccardo Lo Bianco & Primo Proietti & Luca Regni & Tiziano Caruso, 2021. "Planting Systems for Modern Olive Growing: Strengths and Weaknesses," Agriculture, MDPI, vol. 11(6), pages 1-18, May.
    7. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    8. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    9. Daniel Queirós da Silva & André Silva Aguiar & Filipe Neves dos Santos & Armando Jorge Sousa & Danilo Rabino & Marcella Biddoccu & Giorgia Bagagiolo & Marco Delmastro, 2021. "Measuring Canopy Geometric Structure Using Optical Sensors Mounted on Terrestrial Vehicles: A Case Study in Vineyards," Agriculture, MDPI, vol. 11(3), pages 1-19, March.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    2. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    3. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    5. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    6. Aster Tesfaye Hordofa & Olkeba Tolessa Leta & Tena Alamirew & Abebe Demissie Chukalla, 2022. "Response of Winter Wheat Production to Climate Change in Ziway Lake Basin," Sustainability, MDPI, vol. 14(20), pages 1-17, October.
    7. Grados, D. & Reynarfaje, X. & Schrevens, E., 2020. "A methodological approach to assess canopy NDVI–based tomato dynamics under irrigation treatments," Agricultural Water Management, Elsevier, vol. 240(C).
    8. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    9. Nathan Felipe da Silva Caldana & Pablo Ricardo Nitsche & Alan Carlos Martelócio & Anderson Paulo Rudke & Geovanna Cristina Zaro & Luiz Gustavo Batista Ferreira & Paulo Vicente Contador Zaccheo & Sergi, 2019. "Agroclimatic Risk Zoning of Avocado ( Persea americana ) in the Hydrographic Basin of Paraná River III, Brazil," Agriculture, MDPI, vol. 9(12), pages 1-11, December.
    10. Qi Jiang & Jizhi Li & Hongyun Si & Yangyue Su, 2022. "The Impact of the Digital Economy on Agricultural Green Development: Evidence from China," Agriculture, MDPI, vol. 12(8), pages 1-22, July.
    11. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    12. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    13. Wang, Jingjing & Lou, Yu & Wang, Wentao & Liu, Suyi & Zhang, Haohui & Hui, Xin & Wang, Yunling & Yan, Haijun & Maes, Wouter H., 2024. "A robust model for diagnosing water stress of winter wheat by combining UAV multispectral and thermal remote sensing," Agricultural Water Management, Elsevier, vol. 291(C).
    14. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    15. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    16. Volodymyr Bulgakov & Simone Pascuzzi & Hristo Beloev & Semjons Ivanovs, 2019. "Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate," Agriculture, MDPI, vol. 9(10), pages 1-11, October.
    17. Zhou, Yongcai & Lao, Congcong & Yang, Yalong & Zhang, Zhitao & Chen, Haiying & Chen, Yinwen & Chen, Junying & Ning, Jifeng & Yang, Ning, 2021. "Diagnosis of winter-wheat water stress based on UAV-borne multispectral image texture and vegetation indices," Agricultural Water Management, Elsevier, vol. 256(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:11:p:233-:d:281519. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.