IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v10y2020i10p467-d426522.html
   My bibliography  Save this article

Experimental Study of Disc Fertilizer Spreader Performance

Author

Listed:
  • Artur Przywara

    (Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, 20-033 Lublin, Poland)

  • Francesco Santoro

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

  • Artur Kraszkiewicz

    (Department of Machinery Exploitation and Management of Production Processes, University of Life Sciences in Lublin, 20-033 Lublin, Poland)

  • Anna Pecyna

    (Department of Technology Fundamentals, University of Life Sciences in Lublin, 20-033 Lublin, Poland)

  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, Via Amendola 165/A, 70126 Bari, Italy)

Abstract

We report the experimental results of tests aimed at assessing the effects of different settings on the mean radius of mineral fertilizer distribution using a disc fertilizer spreader. Our aim was to improve the performance of fertilizer distribution in sustainable agriculture. Three types of mineral fertilizers with different physical characteristics, commonly used in agriculture, were considered: urea, calcium ammonium nitrate and ammonium sulfate. A complete randomization method based on a four-factor experimental model was used to study the influence of the functional and operational parameters on the mean radius of fertilizer spread. Fixed model analysis of variance showed that fertilizer type, vane configuration and disc angular velocity explained 91.74% of the variance of the spread mean radius, while linear multiple regression analysis highlighted that the fertilizer dust fraction and disc angular velocity had an overall effect of 82.72%, the former showing an inverse correlation as high as 72.77%.

Suggested Citation

  • Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
  • Handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:467-:d:426522
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/10/10/467/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/10/10/467/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    2. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    3. Volodymyr Bulgakov & Simone Pascuzzi & Volodymyr Nadykto & Semjons Ivanovs, 2018. "A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate," Agriculture, MDPI, vol. 8(10), pages 1-15, October.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    5. Alexandros Sotirios Anifantis & Salvatore Camposeo & Gaetano Alessandro Vivaldi & Francesco Santoro & Simone Pascuzzi, 2019. "Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard," Agriculture, MDPI, vol. 9(11), pages 1-14, October.
    6. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    7. Koko, Jonas & Virin, Teddy, 2009. "Optimization of a fertilizer spreading process," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 79(10), pages 3099-3109.
    8. Francesco Santoro & Alexandros Sotirios Anifantis & Giuseppe Ruggiero & Vladislav Zavadskiy & Simone Pascuzzi, 2019. "Lightning Protection Systems Suitable for Stables: A Case Study," Agriculture, MDPI, vol. 9(4), pages 1-7, April.
    9. Arrigo Salvatore Guerrieri & Alexandros Sotirios Anifantis & Francesco Santoro & Simone Pascuzzi, 2019. "Study of a Large Square Baler with Innovative Technological Systems that Optimize the Baling Effectiveness," Agriculture, MDPI, vol. 9(5), pages 1-8, April.
    10. Paweł Sobczak & Jacek Mazur & Kazimierz Zawiślak & Marian Panasiewicz & Wioletta Żukiewicz-Sobczak & Jolanta Królczyk & Jerzy Lechowski, 2019. "Evaluation of Dust Concentration During Grinding Grain in Sustainable Agriculture," Sustainability, MDPI, vol. 11(17), pages 1-11, August.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Vaidas Bivainis & Eglė Jotautienė & Kristina Lekavičienė & Ramūnas Mieldažys & Gražvydas Juodišius, 2023. "Theoretical and Experimental Verification of Organic Granular Fertilizer Spreading," Agriculture, MDPI, vol. 13(6), pages 1-18, May.
    2. Xiuli Zhang & Yikun Pei & Yong Chen & Qianglong Song & Peilin Zhou & Yueqing Xia & Xiaochan Liu, 2022. "The Design and Experiment of Vertical Variable Cavity Base Fertilizer Fertilizing Apparatus," Agriculture, MDPI, vol. 12(11), pages 1-15, October.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    2. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    3. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    4. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    5. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    6. Mohamed A. Hassaan & Antonio Pantaleo & Francesco Santoro & Marwa R. Elkatory & Giuseppe De Mastro & Amany El Sikaily & Safaa Ragab & Ahmed El Nemr, 2020. "Techno-Economic Analysis of ZnO Nanoparticles Pretreatments for Biogas Production from Barley Straw," Energies, MDPI, vol. 13(19), pages 1-26, September.
    7. Andrea Colantoni & Rodolfo Picchio & Alvaro Marucci & Elena Di Mattia & Valerio Cristofori & Fabio Recanatesi & Mauro Villarini & Danilo Monarca & Massimo Cecchini, 2020. "WP3—Innovation in Agriculture and Forestry Sector for Energetic Sustainability," Energies, MDPI, vol. 13(22), pages 1-7, November.
    8. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    9. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    10. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    11. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    12. José Ignacio Rojas-Sola & Gloria del Río-Cidoncha & Ángel Coronil-García, 2020. "Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
    13. Volodymyr Bulgakov & Simone Pascuzzi & Hristo Beloev & Semjons Ivanovs, 2019. "Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate," Agriculture, MDPI, vol. 9(10), pages 1-11, October.
    14. Gabriel G. R. de Castro & Guido S. Berger & Alvaro Cantieri & Marco Teixeira & José Lima & Ana I. Pereira & Milena F. Pinto, 2023. "Adaptive Path Planning for Fusing Rapidly Exploring Random Trees and Deep Reinforcement Learning in an Agriculture Dynamic Environment UAVs," Agriculture, MDPI, vol. 13(2), pages 1-25, January.
    15. Singara Veloo Kanageswari & Lope G. Tabil & Shahabaddine Sokhansanj, 2022. "Dust and Particulate Matter Generated during Handling and Pelletization of Herbaceous Biomass: A Review," Energies, MDPI, vol. 15(7), pages 1-18, April.
    16. Pietro Pandolfi & Ivan Notardonato & Sergio Passarella & Maria Pia Sammartino & Giovanni Visco & Paolo Ceci & Loretta De Giorgi & Virgilio Stillittano & Domenico Monci & Pasquale Avino, 2023. "Characteristics of Commercial and Raw Pellets Available on the Italian Market: Study of Organic and Inorganic Fraction and Related Chemometric Approach," IJERPH, MDPI, vol. 20(16), pages 1-14, August.
    17. Daniel Queirós da Silva & André Silva Aguiar & Filipe Neves dos Santos & Armando Jorge Sousa & Danilo Rabino & Marcella Biddoccu & Giorgia Bagagiolo & Marco Delmastro, 2021. "Measuring Canopy Geometric Structure Using Optical Sensors Mounted on Terrestrial Vehicles: A Case Study in Vineyards," Agriculture, MDPI, vol. 11(3), pages 1-19, March.
    18. Lyes Bennamoun & Merlin Simo-Tagne & Macmanus Chinenye Ndukwu, 2020. "Simulation of Storage Conditions of Mixed Biomass Pellets for Bioenergy Generation: Study of the Thermodynamic Properties," Energies, MDPI, vol. 13(10), pages 1-14, May.
    19. Riccardo Lo Bianco & Primo Proietti & Luca Regni & Tiziano Caruso, 2021. "Planting Systems for Modern Olive Growing: Strengths and Weaknesses," Agriculture, MDPI, vol. 11(6), pages 1-18, May.
    20. Vaidas Bivainis & Eglė Jotautienė & Kristina Lekavičienė & Ramūnas Mieldažys & Gražvydas Juodišius, 2023. "Theoretical and Experimental Verification of Organic Granular Fertilizer Spreading," Agriculture, MDPI, vol. 13(6), pages 1-18, May.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:10:y:2020:i:10:p:467-:d:426522. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.