IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v9y2019i10p224-d277060.html
   My bibliography  Save this article

Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate

Author

Listed:
  • Volodymyr Bulgakov

    (Department of Mechanics, Faculty of Construction and Design, National University of Life and Environmental Sciences of Ukraine, 03041 Kyiv, Ukraine)

  • Simone Pascuzzi

    (Department of Agricultural and Environmental Science, University of Bari Aldo Moro, 70126 Bari, Italy)

  • Hristo Beloev

    (Department of Agricultural Machinery, University of Ruse “Angel Kanchev”, Studentska 8, POB7017 Ruse, Bulgaria)

  • Semjons Ivanovs

    (Faculty of Engineering, Latvia University of Life Sciences and Technologies, LV-2130 Jelgava, Latvia)

Abstract

Turning time occupies a significant part of the operations carried out by implement-and-tractor aggregates, especially in fields with short runs. Incorrectly executed turns increase the width of the turning strips, significantly increasing the idle path of the implement-and-tractor aggregate, with negative effect on its efficiency. The objective of this paper was to theoretically analyse the turning agility of an asymmetric implement-and-tractor aggregate, taking into account its forward speed and design parameters. Considering a trailed asymmetric swath reaper and tractor aggregate, the obtained equations allowed a numerical simulation in order to evaluate the headland turning agility of this implement-and-tractor aggregate. The minimal radii of the trailed asymmetric swath reaper and tractor aggregate are, respectively, 8.33 m for right-side turn and 4.90 m for left-side turn. Furthermore, the optimal angle between the longitudinal axis of the aggregating tractor and the hitch bar of the trailed asymmetric implement exists only in the case of left-side U-turns and its value is 1.12 rad (64°). It is not possible to cover right-side U-turns or both right- and left-side pear-shaped loop-turn in the optimal mode.

Suggested Citation

  • Volodymyr Bulgakov & Simone Pascuzzi & Hristo Beloev & Semjons Ivanovs, 2019. "Theoretical Investigations of the Headland Turning Agility of a Trailed Asymmetric Implement-and-Tractor Aggregate," Agriculture, MDPI, vol. 9(10), pages 1-11, October.
  • Handle: RePEc:gam:jagris:v:9:y:2019:i:10:p:224-:d:277060
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/9/10/224/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/9/10/224/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Volodymyr Bulgakov & Simone Pascuzzi & Volodymyr Nadykto & Semjons Ivanovs, 2018. "A Mathematical Model of the Plane-Parallel Movement of an Asymmetric Machine-and-Tractor Aggregate," Agriculture, MDPI, vol. 8(10), pages 1-15, October.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Francesco Santoro & Alexandros Sotirios Anifantis, 2018. "Mathematical Model of the Plane-Parallel Movement of the Self-Propelled Root-Harvesting Machine," Sustainability, MDPI, vol. 10(10), pages 1-11, October.
    3. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    3. Marek Boryga & Paweł Kołodziej & Krzysztof Gołacki, 2020. "Application of Polynomial Transition Curves for Trajectory Planning on the Headlands," Agriculture, MDPI, vol. 10(5), pages 1-16, May.
    4. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Francesco Santoro & Alexandros Sotirios Anifantis & Ievhen Ihnatiev, 2020. "Performance Assessment of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 13(14), pages 1-12, July.
    2. Volodymyr Bulgakov & Simone Pascuzzi & Semjons Ivanovs & Zinoviy Ruzhylo & Ivan Fedosiy & Francesco Santoro, 2020. "A New Spiral Potato Cleaner to Enhance the Removal of Impurities and Soil Clods in Potato Harvesting," Sustainability, MDPI, vol. 12(23), pages 1-19, November.
    3. Simone Pascuzzi & Volodymyr Bulgakov & Francesco Santoro & Alexandros Sotirios Anifantis & Semjons Ivanovs & Ivan Holovach, 2020. "A Study on the Drift of Spray Droplets Dipped in Airflows with Different Directions," Sustainability, MDPI, vol. 12(11), pages 1-15, June.
    4. Artur Przywara & Francesco Santoro & Artur Kraszkiewicz & Anna Pecyna & Simone Pascuzzi, 2020. "Experimental Study of Disc Fertilizer Spreader Performance," Agriculture, MDPI, vol. 10(10), pages 1-11, October.
    5. Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2020. "The Concept of a Compact Profile Agricultural Tractor Suitable for Use on Specialised Tree Crops," Agriculture, MDPI, vol. 10(4), pages 1-10, April.
    6. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Volodymyr Kuvachov & Ladislav Nozdrovicky, 2019. "Theoretical Study of Transverse Offsets of Wide Span Tractor Working Implements and Their Influence on Damage to Row Crops," Agriculture, MDPI, vol. 9(7), pages 1-10, July.
    7. Volodymyr Bulgakov & Simone Pascuzzi & Alexandros Sotirios Anifantis & Francesco Santoro, 2019. "Oscillations Analysis of Front-Mounted Beet Topper Machine for Biomass Harvesting," Energies, MDPI, vol. 12(14), pages 1-14, July.
    8. Artur Kraszkiewicz & Artur Przywara & Alexandros Sotirios Anifantis, 2020. "Impact of Ignition Technique on Pollutants Emission during the Combustion of Selected Solid Biofuels," Energies, MDPI, vol. 13(10), pages 1-13, May.
    9. Sara Rajabi Hamedani & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Massimo Cecchini & Francesco Santoro & Antonio Pantaleo, 2020. "Environmental and Economic Analysis of an Anaerobic Co-Digestion Power Plant Integrated with a Compost Plant," Energies, MDPI, vol. 13(11), pages 1-14, May.
    10. Marek Boryga & Paweł Kołodziej & Krzysztof Gołacki, 2020. "Application of Polynomial Transition Curves for Trajectory Planning on the Headlands," Agriculture, MDPI, vol. 10(5), pages 1-16, May.
    11. Alexandros Sotirios Anifantis & Salvatore Camposeo & Gaetano Alessandro Vivaldi & Francesco Santoro & Simone Pascuzzi, 2019. "Comparison of UAV Photogrammetry and 3D Modeling Techniques with Other Currently Used Methods for Estimation of the Tree Row Volume of a Super-High-Density Olive Orchard," Agriculture, MDPI, vol. 9(11), pages 1-14, October.
    12. José Ignacio Rojas-Sola & Gloria del Río-Cidoncha & Ángel Coronil-García, 2020. "Industrial Archaeology Applied to the Study of an Ancient Harvesting Machine: Three-Dimensional Modelling and Virtual Reconstruction," Agriculture, MDPI, vol. 10(8), pages 1-23, August.
    13. Tatevik Yezekyan & Francesco Marinello & Giannantonio Armentano & Samuele Trestini & Luigi Sartori, 2018. "Definition of Reference Models for Power, Weight, Working Width, and Price for Seeding Machines," Agriculture, MDPI, vol. 8(12), pages 1-13, November.
    14. Antonio Pantaleo & Mauro Villarini & Andrea Colantoni & Maurizio Carlini & Francesco Santoro & Sara Rajabi Hamedani, 2020. "Techno-Economic Modeling of Biomass Pellet Routes: Feasibility in Italy," Energies, MDPI, vol. 13(7), pages 1-15, April.
    15. Volodymyr Bulgakov & Simone Pascuzzi & Valerii Adamchuk & Jaroslav Gadzalo & Volodymyr Nadykto & Jüri Olt & Janusz Nowak & Viktor Kaminskiy, 2022. "Dynamics of Temperature Variation in Soil under Fallow Tillage at Different Depths," Agriculture, MDPI, vol. 12(4), pages 1-12, March.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:9:y:2019:i:10:p:224-:d:277060. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.