Author
Listed:
- Liu, Qi
- Qu, Zhongyi
- Hu, Xiaolong
- Bai, Yanying
- Yang, Wei
- Yang, Yixuan
- Bian, Jiang
- Zhang, Dongliang
- Shi, Liangsheng
Abstract
Using thermal infrared remote sensing from unmanned aerial vehicles (UAVs) to obtain crop canopy temperature and calculate the crop water stress index (CWSI) is a promising method for monitoring field water conditions. However, such endeavors are often constrained to instantaneous scales due to the diurnal variability of thermal infrared data. To address this limitation, we developed a daily-scale CWSI suitable for UAV remote sensing, enhancing the temporal representativeness of crop water stress diagnostics. We focused on spring maize in the Hetao Irrigation District of Inner Mongolia and investigated four key growth stages. UAV thermal infrared was used to obtain multiple instantaneous statistical CWSI (CWSIs) values during the day. UAV multispectral data and the Penman–Monteith model were combined to obtain the actual evapotranspiration and daily-scale CWSI (CWSIt_day). A temporal upscaling model from instantaneous CSWI to daily-scale CWSI was established by comparing the relationships between the CWSIs and CWSIt_day at different times. Results show that compared to the fluctuations of the CWSIs values throughout the day, those of the CWSIt_day values were smaller, with values of 0.13, 0.09, 0.03, and 0.03 during the ninth leaf (V9), tasseling (VT), silking (R1), and milk (R3) stages, respectively. The CWSIt_day demonstrated a higher correlation with the measured stomatal conductance (gs) at different time periods, thereby being more stable and temporally representative. However, both indices may incorrectly interpret the decline in leaf physiological activity due to aging as water stress at the end of maize growth, leading to overestimated CWSI values. The temporal upscaling model, which was developed by combining CWSIs values observed at 12:00, 14:00, and 16:00 with the random forest regression algorithm, achieved coefficient of determination of 0.794 and root mean square error of 0.04. Hence, multiple instantaneous observations can be used effectively instead of daily-scale observations, providing key insights into the popularization and application of the CWSIt_day. Overall, this study presents a new method for obtaining continuous CWSI values with high temporal and spatial resolutions based on a UAV platform.
Suggested Citation
Liu, Qi & Qu, Zhongyi & Hu, Xiaolong & Bai, Yanying & Yang, Wei & Yang, Yixuan & Bian, Jiang & Zhang, Dongliang & Shi, Liangsheng, 2024.
"Combining UAV remote sensing data to estimate daily-scale crop water stress index: Enhancing diagnostic temporal representativeness,"
Agricultural Water Management, Elsevier, vol. 305(C).
Handle:
RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004669
DOI: 10.1016/j.agwat.2024.109130
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
Corrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:agiwat:v:305:y:2024:i:c:s0378377424004669. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
We have no bibliographic references for this item. You can help adding them by using this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/locate/agwat .
Please note that corrections may take a couple of weeks to filter through
the various RePEc services.