IDEAS home Printed from https://ideas.repec.org/a/gam/jagris/v15y2025i3p258-d1576570.html
   My bibliography  Save this article

Digital Revolution in Agriculture: Using Predictive Models to Enhance Agricultural Performance Through Digital Technology

Author

Listed:
  • Anca Antoaneta Vărzaru

    (Department of Economics, Accounting and International Business, University of Craiova, 200585 Craiova, Romania)

Abstract

Digital innovation in agriculture has become a powerful force in the modern world as it revolutionizes the agricultural sector and improves the sustainability and efficacy of farming practices. In this context, the study examines the effects of digital technology, as reflected by the digital economy and society index (DESI), on key agricultural performance metrics, including agricultural output and real labor productivity per person. The paper develops a strong analytical method for quantifying these associations using predictive models, such as exponential smoothing, ARIMA, and artificial neural networks. The method fully illustrates how economic and technological components interact, including labor productivity, agricultural output, and GDP per capita. The results demonstrate that digital technologies significantly impact agricultural output and labor productivity. These findings illustrate the importance of digital transformation in modernizing and improving agriculture’s overall efficacy. The study’s conclusion highlights the necessity of integrating digital technology into agricultural policy to address productivity problems and nurture sustainable growth in the sector.

Suggested Citation

  • Anca Antoaneta Vărzaru, 2025. "Digital Revolution in Agriculture: Using Predictive Models to Enhance Agricultural Performance Through Digital Technology," Agriculture, MDPI, vol. 15(3), pages 1-31, January.
  • Handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:258-:d:1576570
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2077-0472/15/3/258/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2077-0472/15/3/258/
    Download Restriction: no
    ---><---

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jagris:v:15:y:2025:i:3:p:258-:d:1576570. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.