IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v173y2023ics1366554523000960.html
   My bibliography  Save this article

Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach

Author

Listed:
  • Huo, Jinbiao
  • Liu, Chengqi
  • Chen, Jingxu
  • Meng, Qiang
  • Wang, Jian
  • Liu, Zhiyuan

Abstract

This study focuses on dynamic origin–destination demand estimation problem on freeway networks. Existing studies on this problem rely on high-coverage of traffic measurements and assumptions on travel times, exhibiting limitations in real-world applications. We formulate the problem as a bi-level programming model, where micro-simulations are incorporated to precisely model traffic flows/travel times on freeways. The bi-level programming model cannot provide explicit closed-form expressions for the objective function and its derivatives, and also intrinsically high-dimensional. Thus, it is highly challenging to find efficient solution algorithms. In this regard, a problem-specific and computationally efficient Bayesian optimization approach is designed. Herein, a novel surrogate model is proposed by embedding a physical surrogate model (it characterizes underlying physical mechanisms and provides global yet less precise approximations) into a functional surrogate model (it provides precise local approximations). The embedding provides problem-specific knowledge for the surrogate model. More importantly, it also restricts the feasible region, enabling the surrogate model to efficiently deal with high-dimensional problems. Gaussian process can be served as the functional surrogate model. Two linear physical surrogate models are proposed to capture interactions between travel demand and traffic measurements. To deal with constraints in the surrogate model, a projection-distance based acquisition function is designed. In searching for new points, the proposed acquisition function is capable of assigning unique weight of exploration to each feasible solution. The proposed approach is validated based on a freeway corridor example, which indicates its outperformance over existing dynamic origin–destination estimation methods in terms of computational efficiency and solution accuracy.

Suggested Citation

  • Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
  • Handle: RePEc:eee:transe:v:173:y:2023:i:c:s1366554523000960
    DOI: 10.1016/j.tre.2023.103108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554523000960
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2023.103108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Chang, Gang-Len & Wu, Jifeng, 1994. "Recursive estimation of time-varying origin-destination flows from traffic counts in freeway corridors," Transportation Research Part B: Methodological, Elsevier, vol. 28(2), pages 141-160, April.
    2. Fu, Hao & Lam, William H.K. & Shao, Hu & Kattan, Lina & Salari, Mostafa, 2022. "Optimization of multi-type traffic sensor locations for estimation of multi-period origin-destination demands with covariance effects," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    3. Cheng, Qixiu & Liu, Zhiyuan & Lin, Yuqian & Zhou, Xuesong (Simon), 2021. "An s-shaped three-parameter (S3) traffic stream model with consistent car following relationship," Transportation Research Part B: Methodological, Elsevier, vol. 153(C), pages 246-271.
    4. Ge, Qian & Fukuda, Daisuke, 2019. "A macroscopic dynamic network loading model for multiple-reservoir system," Transportation Research Part B: Methodological, Elsevier, vol. 126(C), pages 502-527.
    5. Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
    6. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    7. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    8. Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
    9. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    10. Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
    11. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    12. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    13. K. Ashok & M. E. Ben-Akiva, 2002. "Estimation and Prediction of Time-Dependent Origin-Destination Flows with a Stochastic Mapping to Path Flows and Link Flows," Transportation Science, INFORMS, vol. 36(2), pages 184-198, May.
    14. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
    15. Li, Guoyuan & Chen, Anthony, 2022. "Frequency-based path flow estimator for transit origin-destination trip matrices incorporating automatic passenger count and automatic fare collection data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 163(C).
    16. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    17. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Simulation-based robust optimization of limited-stop bus service with vehicle overtaking and dynamics: A response surface methodology," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 130(C), pages 61-81.
    18. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    19. Kalahasthi, Lokesh & Holguín-Veras, José & Yushimito, Wilfredo F., 2022. "A freight origin-destination synthesis model with mode choice," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 157(C).
    20. Ennio Cascetta & Domenico Inaudi & Gérald Marquis, 1993. "Dynamic Estimators of Origin-Destination Matrices Using Traffic Counts," Transportation Science, INFORMS, vol. 27(4), pages 363-373, November.
    21. K. Ashok & M. E. Ben-Akiva, 2000. "Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin–Destination Flows," Transportation Science, INFORMS, vol. 34(1), pages 21-36, February.
    22. Fisk, C. S. & Boyce, D. E., 1983. "A note on trip matrix estimation from link traffic count data," Transportation Research Part B: Methodological, Elsevier, vol. 17(3), pages 245-250, June.
    23. Zhao, Dongfang & Balusu, Suryaprasanna Kumar & Sheela, Parvathy Vinod & Li, Xiaopeng & Pinjari, Abdul Rawoof & Eluru, Naveen, 2020. "Weight-categorized truck flow estimation: A data-fusion approach and a Florida case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 136(C).
    24. Bob Hickish & David I. Fletcher & Robert F. Harrison, 2020. "Investigating Bayesian Optimization for rail network optimization," International Journal of Rail Transportation, Taylor & Francis Journals, vol. 8(4), pages 307-323, October.
    25. Fisk, C. S., 1988. "On combining maximum entropy trip matrix estimation with user optimal assignment," Transportation Research Part B: Methodological, Elsevier, vol. 22(1), pages 69-73, February.
    26. Bell, Michael G. H., 1991. "The real time estimation of origin-destination flows in the presence of platoon dispersion," Transportation Research Part B: Methodological, Elsevier, vol. 25(2-3), pages 115-125.
    27. (Sean) Qian, Zhen & Li, Jia & Li, Xiaopeng & Zhang, Michael & Wang, Haizhong, 2017. "Modeling heterogeneous traffic flow: A pragmatic approach," Transportation Research Part B: Methodological, Elsevier, vol. 99(C), pages 183-204.
    28. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mo, Xiaoyu & Xing, Yang & Lv, Chen, 2024. "Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
    2. Zhang, Jinyu & Huang, Di & Liu, Zhiyuan & Zheng, Yifei & Han, Yu & Liu, Pan & Huang, Wei, 2024. "A data-driven optimization-based approach for freeway traffic state estimation based on heterogeneous sensor data fusion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
    3. Liu, Zhiyuan & Xie, Shen & Zhang, Honggang & Zhou, Dinghao & Yang, Yuwei, 2024. "A parallel computing framework for large-scale microscopic traffic simulation based on spectral partitioning," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 181(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nie, Yu (Marco) & Zhang, H.M., 2008. "A variational inequality formulation for inferring dynamic origin-destination travel demands," Transportation Research Part B: Methodological, Elsevier, vol. 42(7-8), pages 635-662, August.
    2. Zhang, Michael & Nie, Yu & Shen, Wei & Lee, Ming S. & Jansuwan, Sarawut & Chootinan, Piya & Pravinvongvuth, Surachet & Chen, Anthony & Recker, Will W., 2008. "Development of A Path Flow Estimator for Inferring Steady-State and Time-Dependent Origin-Destination Trip Matrices," Institute of Transportation Studies, Research Reports, Working Papers, Proceedings qt3nr033sc, Institute of Transportation Studies, UC Berkeley.
    3. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    4. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    5. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    6. Gu, Ziyuan & Li, Yifan & Saberi, Meead & Rashidi, Taha H. & Liu, Zhiyuan, 2023. "Macroscopic parking dynamics and equitable pricing: Integrating trip-based modeling with simulation-based robust optimization," Transportation Research Part B: Methodological, Elsevier, vol. 173(C), pages 354-381.
    7. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
    8. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    9. Huo, Jinbiao & Liu, Zhiyuan & Chen, Jingxu & Cheng, Qixiu & Meng, Qiang, 2023. "Bayesian optimization for congestion pricing problems: A general framework and its instability," Transportation Research Part B: Methodological, Elsevier, vol. 169(C), pages 1-28.
    10. Yong Lin, 2023. "Models, Algorithms and Applications of DynasTIM Real-Time Traffic Simulation System," Sustainability, MDPI, vol. 15(2), pages 1-30, January.
    11. Wu, Jifeng, 1997. "A real-time origin-destination matrix updating algorithm for on-line applications," Transportation Research Part B: Methodological, Elsevier, vol. 31(5), pages 381-396, October.
    12. Lin, Pei-Wei & Chang, Gang-Len, 2007. "A generalized model and solution algorithm for estimation of the dynamic freeway origin-destination matrix," Transportation Research Part B: Methodological, Elsevier, vol. 41(5), pages 554-572, June.
    13. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    14. K. Ashok & M. E. Ben-Akiva, 2000. "Alternative Approaches for Real-Time Estimation and Prediction of Time-Dependent Origin–Destination Flows," Transportation Science, INFORMS, vol. 34(1), pages 21-36, February.
    15. Flurin S. Hänseler & Nicholas A. Molyneaux & Michel Bierlaire, 2017. "Estimation of Pedestrian Origin-Destination Demand in Train Stations," Transportation Science, INFORMS, vol. 51(3), pages 981-997, August.
    16. Juha-Matti Kuusinen & Janne Sorsa & Marja-Liisa Siikonen, 2015. "The Elevator Trip Origin-Destination Matrix Estimation Problem," Transportation Science, INFORMS, vol. 49(3), pages 559-576, August.
    17. Kumarage, Sakitha & Yildirimoglu, Mehmet & Zheng, Zuduo, 2023. "A hybrid modelling framework for the estimation of dynamic origin–destination flows," Transportation Research Part B: Methodological, Elsevier, vol. 176(C).
    18. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    19. David Schmaranzer & Roland Braune & Karl F. Doerner, 2021. "Multi-objective simulation optimization for complex urban mass rapid transit systems," Annals of Operations Research, Springer, vol. 305(1), pages 449-486, October.
    20. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:173:y:2023:i:c:s1366554523000960. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.