IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v39y2005i7p565-591.html
   My bibliography  Save this article

An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix

Author

Listed:
  • Doblas, Javier
  • Benitez, Francisco G.

Abstract

The scope of this paper is eminently practical. It addresses the problem of estimating and updating observed O-D matrices based upon available link flow information by means of the non-linear programming approach corresponding to the Augmented Lagrangian Function (ALM). In this way, one can estimate O-D matrices in a way which uses an efficient algorithm that minimizes the amount of stored information required for solving large-sized problems. A solution algorithm is provided, which has been completely developed and designed to be used within commercial assignment codes. The limitations and the features of these programmes have, in a natural way, conditioned the solution adopted for the model proposed. The case of updating a trip matrix, from a home-based survey, of a real problem corresponding to an existing city is analysed. For this application case two methodologies are reviewed; the first one does not incorporate constraints related to the total number of trips, the zonal productions and attractions, or individual O-D pairs; the second one does take them into account. The results obtained from the application of the proposed method to a prior O-D trip matrix, show huge differences with respect to the results yielded when the adjustment process does not limit the variations of the single terms (O-D pairs) with upper or lower boundaries. This comparison is carried out and based upon the wide spread Spiess's Gradient Algorithm. The graphical results depict the drastic contrasts observed, related to the distortion experienced by the information contained in the O-D trip matrix of a home-based survey, when using this methodology and the one proposed here.

Suggested Citation

  • Doblas, Javier & Benitez, Francisco G., 2005. "An approach to estimating and updating origin-destination matrices based upon traffic counts preserving the prior structure of a survey matrix," Transportation Research Part B: Methodological, Elsevier, vol. 39(7), pages 565-591, August.
  • Handle: RePEc:eee:transb:v:39:y:2005:i:7:p:565-591
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191-2615(04)00103-1
    Download Restriction: Full text for ScienceDirect subscribers only
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Spiess, Heinz & Florian, Michael, 1989. "Optimal strategies: A new assignment model for transit networks," Transportation Research Part B: Methodological, Elsevier, vol. 23(2), pages 83-102, April.
    2. Maher, M. J., 1983. "Inferences on trip matrices from observations on link volumes: A Bayesian statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 17(6), pages 435-447, December.
    3. Brenninger-Göthe, Maud & Jörnsten, Kurt O. & Lundgren, Jan T., 1989. "Estimation of origin-destination matrices from traffic counts using multiobjective programming formulations," Transportation Research Part B: Methodological, Elsevier, vol. 23(4), pages 257-269, August.
    4. Cascetta, Ennio, 1984. "Estimation of trip matrices from traffic counts and survey data: A generalized least squares estimator," Transportation Research Part B: Methodological, Elsevier, vol. 18(4-5), pages 289-299.
    5. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    6. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    7. Cascetta, Ennio & Nguyen, Sang, 1988. "A unified framework for estimating or updating origin/destination matrices from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 22(6), pages 437-455, December.
    8. Malachy Carey & Riccardo Revelli, 1986. "Constrained Estimation of Direct Demand Functions and Trip Matrices," Transportation Science, INFORMS, vol. 20(3), pages 143-152, August.
    9. Spiess, Heinz, 1987. "A maximum likelihood model for estimating origin-destination matrices," Transportation Research Part B: Methodological, Elsevier, vol. 21(5), pages 395-412, October.
    10. Maher, Michael J. & Zhang, Xiaoyan & Vliet, Dirck Van, 2001. "A bi-level programming approach for trip matrix estimation and traffic control problems with stochastic user equilibrium link flows," Transportation Research Part B: Methodological, Elsevier, vol. 35(1), pages 23-40, January.
    11. Sue McNeil & Chris Hendrickson, 1985. "A Regression Formulation of the Matrix Estimation Problem," Transportation Science, INFORMS, vol. 19(3), pages 278-292, August.
    12. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1996. "Estimation of an origin-destination matrix with random link choice proportions: A statistical approach," Transportation Research Part B: Methodological, Elsevier, vol. 30(4), pages 309-324, August.
    13. Yang, Hai & Sasaki, Tsuna & Iida, Yasunori & Asakura, Yasuo, 1992. "Estimation of origin-destination matrices from link traffic counts on congested networks," Transportation Research Part B: Methodological, Elsevier, vol. 26(6), pages 417-434, December.
    14. Van Zuylen, Henk J. & Willumsen, Luis G., 1980. "The most likely trip matrix estimated from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 14(3), pages 281-293, September.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    2. Enrique Castillo & Pilar Jiménez & José Menéndez & María Nogal, 2013. "A Bayesian method for estimating traffic flows based on plate scanning," Transportation, Springer, vol. 40(1), pages 173-201, January.
    3. Castillo, Enrique & Menéndez, José María & Jiménez, Pilar, 2008. "Trip matrix and path flow reconstruction and estimation based on plate scanning and link observations," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 455-481, June.
    4. Guo, Jianhua & Liu, Yu & Li, Xiugang & Huang, Wei & Cao, Jinde & Wei, Yun, 2019. "Enhanced least square based dynamic OD matrix estimation using Radio Frequency Identification data," Mathematics and Computers in Simulation (MATCOM), Elsevier, vol. 155(C), pages 27-40.
    5. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    6. Bera, Sharminda & Rao, K. V. Krishna, 2011. "Estimation of origin-destination matrix from traffic counts: the state of the art," European Transport \ Trasporti Europei, ISTIEE, Institute for the Study of Transport within the European Economic Integration, issue 49, pages 2-23.
    7. Mojtaba Rostami Nasab & Yousef Shafahi, 2020. "Estimation of origin–destination matrices using link counts and partial path data," Transportation, Springer, vol. 47(6), pages 2923-2950, December.
    8. Hadavi, Majid & Shafahi, Yousef, 2016. "Vehicle identification sensor models for origin–destination estimation," Transportation Research Part B: Methodological, Elsevier, vol. 89(C), pages 82-106.
    9. Abderrahman Ait-Ali & Jonas Eliasson, 2022. "The value of additional data for public transport origin–destination matrix estimation," Public Transport, Springer, vol. 14(2), pages 419-439, June.
    10. Rezapour, Shabnam & Baghaian, Atefe & Naderi, Nazanin & Sarmiento, Juan P., 2023. "Infection transmission and prevention in metropolises with heterogeneous and dynamic populations," European Journal of Operational Research, Elsevier, vol. 304(1), pages 113-138.
    11. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    12. Guedes, M. Carmo M. & Oliveira, Natália & Santiago, Sérgio & Smirnov, Georgi, 2012. "On the evaluation of a public transportation network quality: Criteria validation methodology," Research in Transportation Economics, Elsevier, vol. 36(1), pages 39-44.
    13. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    14. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Lundgren, Jan T. & Peterson, Anders, 2008. "A heuristic for the bilevel origin-destination-matrix estimation problem," Transportation Research Part B: Methodological, Elsevier, vol. 42(4), pages 339-354, May.
    2. Hai Yang & Qiang Meng & Michael G. H. Bell, 2001. "Simultaneous Estimation of the Origin-Destination Matrices and Travel-Cost Coefficient for Congested Networks in a Stochastic User Equilibrium," Transportation Science, INFORMS, vol. 35(2), pages 107-123, May.
    3. Xie, Chi & Kockelman, Kara M. & Waller, S. Travis, 2011. "A maximum entropy-least squares estimator for elastic origin–destination trip matrix estimation," Transportation Research Part B: Methodological, Elsevier, vol. 45(9), pages 1465-1482.
    4. Louis Grange & Felipe González & Shlomo Bekhor, 2017. "Path Flow and Trip Matrix Estimation Using Link Flow Density," Networks and Spatial Economics, Springer, vol. 17(1), pages 173-195, March.
    5. Tao Li, 2017. "A Demand Estimator Based on a Nested Logit Model," Transportation Science, INFORMS, vol. 51(3), pages 918-930, August.
    6. Yang, Yudi & Fan, Yueyue & Wets, Roger J.B., 2018. "Stochastic travel demand estimation: Improving network identifiability using multi-day observation sets," Transportation Research Part B: Methodological, Elsevier, vol. 107(C), pages 192-211.
    7. Castillo, Enrique & Menéndez, José María & Sánchez-Cambronero, Santos, 2008. "Predicting traffic flow using Bayesian networks," Transportation Research Part B: Methodological, Elsevier, vol. 42(5), pages 482-509, June.
    8. Sherali, Hanif D. & Narayanan, Arvind & Sivanandan, R., 2003. "Estimation of origin-destination trip-tables based on a partial set of traffic link volumes," Transportation Research Part B: Methodological, Elsevier, vol. 37(9), pages 815-836, November.
    9. Seungkyu Ryu, 2020. "A Bicycle Origin–Destination Matrix Estimation Based on a Two-Stage Procedure," Sustainability, MDPI, vol. 12(7), pages 1-14, April.
    10. Z. Wu & W. Lam, 2006. "Transit passenger origin-destination estimation in congested transit networks with elastic line frequencies," Annals of Operations Research, Springer, vol. 144(1), pages 363-378, April.
    11. Dimitris Bertsimas & Julia Yan, 2018. "From Physical Properties of Transportation Flows to Demand Estimation: An Optimization Approach," Transportation Science, INFORMS, vol. 52(4), pages 1002-1011, August.
    12. Hazelton, Martin L., 2000. "Estimation of origin-destination matrices from link flows on uncongested networks," Transportation Research Part B: Methodological, Elsevier, vol. 34(7), pages 549-566, September.
    13. Lo, Hing-Po & Chan, Chi-Pak, 2003. "Simultaneous estimation of an origin-destination matrix and link choice proportions using traffic counts," Transportation Research Part A: Policy and Practice, Elsevier, vol. 37(9), pages 771-788, November.
    14. Gunnar Flötteröd & Michel Bierlaire & Kai Nagel, 2011. "Bayesian Demand Calibration for Dynamic Traffic Simulations," Transportation Science, INFORMS, vol. 45(4), pages 541-561, November.
    15. Menon, Aditya Krishna & Cai, Chen & Wang, Weihong & Wen, Tao & Chen, Fang, 2015. "Fine-grained OD estimation with automated zoning and sparsity regularisation," Transportation Research Part B: Methodological, Elsevier, vol. 80(C), pages 150-172.
    16. Bielli, Maurizio & Reverberi, Pierfrancesco, 1996. "New operations research and artificial intelligence approaches to traffic engineering problems," European Journal of Operational Research, Elsevier, vol. 92(3), pages 550-572, August.
    17. Bierlaire, M. & Toint, Ph. L., 1995. "Meuse: An origin-destination matrix estimator that exploits structure," Transportation Research Part B: Methodological, Elsevier, vol. 29(1), pages 47-60, February.
    18. Walpen, Jorgelina & Mancinelli, Elina M. & Lotito, Pablo A., 2015. "A heuristic for the OD matrix adjustment problem in a congested transport network," European Journal of Operational Research, Elsevier, vol. 242(3), pages 807-819.
    19. Anselmo Ramalho Pitombeira-Neto & Carlos Felipe Grangeiro Loureiro & Luis Eduardo Carvalho, 2020. "A Dynamic Hierarchical Bayesian Model for the Estimation of day-to-day Origin-destination Flows in Transportation Networks," Networks and Spatial Economics, Springer, vol. 20(2), pages 499-527, June.
    20. Lo, H. P. & Zhang, N. & Lam, W. H. K., 1999. "Decomposition algorithm for statistical estimation of OD matrix with random link choice proportions from traffic counts," Transportation Research Part B: Methodological, Elsevier, vol. 33(5), pages 369-385, June.

    More about this item

    Statistics

    Access and download statistics

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:39:y:2005:i:7:p:565-591. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.