IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v189y2024ics1366554524002473.html
   My bibliography  Save this article

A data-driven optimization-based approach for freeway traffic state estimation based on heterogeneous sensor data fusion

Author

Listed:
  • Zhang, Jinyu
  • Huang, Di
  • Liu, Zhiyuan
  • Zheng, Yifei
  • Han, Yu
  • Liu, Pan
  • Huang, Wei

Abstract

Accurate estimation of freeway traffic states is crucial for designing effective traffic management and operational strategies. The integration of various sensor data, such as data from the Electronic Toll Collection (ETC) system and traffic detectors, can significantly enhance the granularity and coverage of traffic state estimation. This study introduces a data-driven optimization-based approach for estimating freeway traffic states, leveraging the fusion of ETC data with detector data. This methodology capitalizes on the broad coverage provided by ETC data and the fine granularity offered by detector data. The probabilistic interdependence between the traffic state of a segment and its upstream and downstream counterparts is captured from real-world traffic state data. Two optimization models, based on the maximum likelihood and maximin likelihood principles, are developed to accurately depict the distribution patterns of freeway traffic states. To address the computational challenges of large-scale scenarios, the study proposes both a decomposition algorithm and a heuristic algorithm. A case study utilizing real-world data from the G92 freeway in Zhejiang, China, is conducted. The findings indicate that the two optimization models exhibit commendable accuracy, with mean absolute percentage errors of 0.9% and 2.3% during peak hours, and 0.9% and 1.4% during off-peak hours, respectively.

Suggested Citation

  • Zhang, Jinyu & Huang, Di & Liu, Zhiyuan & Zheng, Yifei & Han, Yu & Liu, Pan & Huang, Wei, 2024. "A data-driven optimization-based approach for freeway traffic state estimation based on heterogeneous sensor data fusion," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 189(C).
  • Handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002473
    DOI: 10.1016/j.tre.2024.103656
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524002473
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103656?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Stefan Ropke & David Pisinger, 2006. "An Adaptive Large Neighborhood Search Heuristic for the Pickup and Delivery Problem with Time Windows," Transportation Science, INFORMS, vol. 40(4), pages 455-472, November.
    2. Huang, Di & Liu, Zhiyuan & Liu, Pan & Chen, Jun, 2016. "Optimal transit fare and service frequency of a nonlinear origin-destination based fare structure," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 96(C), pages 1-19.
    3. Huang, Di & Zhang, Jinyu & Liu, Zhiyuan & He, Yiliu & Liu, Pan, 2024. "A novel ranking method based on semi-SPO for battery swapping allocation optimization in a hybrid electric transit system," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 188(C).
    4. Miller, Seth & Laan, Zachary Vander & Marković, Nikola, 2020. "Scaling GPS trajectories to match point traffic counts: A convex programming approach and Utah case study," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    5. Demissie, Merkebe Getachew & Kattan, Lina, 2022. "Estimation of truck origin-destination flows using GPS data," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 159(C).
    6. Wang, Yibing & Papageorgiou, Markos, 2005. "Real-time freeway traffic state estimation based on extended Kalman filter: a general approach," Transportation Research Part B: Methodological, Elsevier, vol. 39(2), pages 141-167, February.
    7. Liu, Zhiyuan & Chen, Xinyuan & Meng, Qiang & Kim, Inhi, 2018. "Remote park-and-ride network equilibrium model and its applications," Transportation Research Part B: Methodological, Elsevier, vol. 117(PA), pages 37-62.
    8. Canepa, Edward S. & Claudel, Christian G., 2017. "Networked traffic state estimation involving mixed fixed-mobile sensor data using Hamilton-Jacobi equations," Transportation Research Part B: Methodological, Elsevier, vol. 104(C), pages 686-709.
    9. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Xinyuan Chen & Ruyang Yin & Qinhe An & Yuan Zhang, 2021. "Modeling a Distance-Based Preferential Fare Scheme for Park-and-Ride Services in a Multimodal Transport Network," Sustainability, MDPI, vol. 13(5), pages 1-14, March.
    2. An, Qinhe & Fu, Xiao & Huang, Di & Cheng, Qixiu & Liu, Zhiyuan, 2020. "Analysis of adding-runs strategy for peak-hour regular bus services," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 143(C).
    3. Huang, Di & Chen, Xinyuan & Liu, Zhiyuan & Lyu, Cheng & Wang, Shuaian & Chen, Xuewu, 2020. "A static bike repositioning model in a hub-and-spoke network framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 141(C).
    4. JANSSENS, Jochen & DE CORTE, Annelies & SÖRENSEN, Kenneth, 2016. "Water distribution network design optimisation with respect to reliability," Working Papers 2016007, University of Antwerp, Faculty of Business and Economics.
    5. Florin, Ryan & Olariu, Stephan, 2020. "Towards real-time density estimation using vehicle-to-vehicle communications," Transportation Research Part B: Methodological, Elsevier, vol. 138(C), pages 435-456.
    6. Bach, Lukas & Hasle, Geir & Schulz, Christian, 2019. "Adaptive Large Neighborhood Search on the Graphics Processing Unit," European Journal of Operational Research, Elsevier, vol. 275(1), pages 53-66.
    7. Arpan Rijal & Marco Bijvank & Asvin Goel & René de Koster, 2021. "Workforce Scheduling with Order-Picking Assignments in Distribution Facilities," Transportation Science, INFORMS, vol. 55(3), pages 725-746, May.
    8. Huo, Jinbiao & Liu, Chengqi & Chen, Jingxu & Meng, Qiang & Wang, Jian & Liu, Zhiyuan, 2023. "Simulation-based dynamic origin–destination matrix estimation on freeways: A Bayesian optimization approach," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 173(C).
    9. Martins, Sara & Ostermeier, Manuel & Amorim, Pedro & Hübner, Alexander & Almada-Lobo, Bernardo, 2019. "Product-oriented time window assignment for a multi-compartment vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 276(3), pages 893-909.
    10. Dessouky, Maged M & Shao, Yihuan E, 2017. "Routing Strategies for Efficient Deployment of Alternative Fuel Vehicles for Freight Delivery," Institute of Transportation Studies, Working Paper Series qt0nj024qn, Institute of Transportation Studies, UC Davis.
    11. Mo, Pengli & Yao, Yu & D’Ariano, Andrea & Liu, Zhiyuan, 2023. "The vehicle routing problem with underground logistics: Formulation and algorithm," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 179(C).
    12. Wu, Weitiao & Liu, Ronghui & Jin, Wenzhou & Ma, Changxi, 2019. "Stochastic bus schedule coordination considering demand assignment and rerouting of passengers," Transportation Research Part B: Methodological, Elsevier, vol. 121(C), pages 275-303.
    13. SteadieSeifi, M. & Dellaert, N.P. & Nuijten, W. & Van Woensel, T., 2017. "A metaheuristic for the multimodal network flow problem with product quality preservation and empty repositioning," Transportation Research Part B: Methodological, Elsevier, vol. 106(C), pages 321-344.
    14. repec:dar:wpaper:62383 is not listed on IDEAS
    15. Parvez Farazi, Nahid & Zou, Bo & Tulabandhula, Theja, 2022. "Dynamic On-Demand Crowdshipping Using Constrained and Heuristics-Embedded Double Dueling Deep Q-Network," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    16. He, Dongdong & Guan, Wei, 2023. "Promoting service quality with incentive contracts in rural bus integrated passenger-freight service," Transportation Research Part A: Policy and Practice, Elsevier, vol. 175(C).
    17. Ma, Tao & Zhou, Zhou & Antoniou, Constantinos, 2018. "Dynamic factor model for network traffic state forecast," Transportation Research Part B: Methodological, Elsevier, vol. 118(C), pages 281-317.
    18. Jone R. Hansen & Kjetil Fagerholt & Magnus Stålhane & Jørgen G. Rakke, 2020. "An adaptive large neighborhood search heuristic for the planar storage location assignment problem: application to stowage planning for Roll-on Roll-off ships," Journal of Heuristics, Springer, vol. 26(6), pages 885-912, December.
    19. Su, Yue & Dupin, Nicolas & Parragh, Sophie N. & Puchinger, Jakob, 2024. "A Branch-and-Price algorithm for the electric autonomous Dial-A-Ride Problem," Transportation Research Part B: Methodological, Elsevier, vol. 186(C).
    20. Arda, Yasemin & Cattaruzza, Diego & François, Véronique & Ogier, Maxime, 2024. "Home chemotherapy delivery: An integrated production scheduling and multi-trip vehicle routing problem," European Journal of Operational Research, Elsevier, vol. 317(2), pages 468-486.
    21. Baals, Julian & Emde, Simon & Turkensteen, Marcel, 2023. "Minimizing earliness-tardiness costs in supplier networks—A just-in-time truck routing problem," European Journal of Operational Research, Elsevier, vol. 306(2), pages 707-741.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:189:y:2024:i:c:s1366554524002473. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.