IDEAS home Printed from https://ideas.repec.org/a/eee/transb/v178y2023ics0191261523001431.html
   My bibliography  Save this article

A data-driven discrete simulation-based optimization algorithm for car-sharing service design

Author

Listed:
  • Zhou, Tianli
  • Fields, Evan
  • Osorio, Carolina

Abstract

This paper formulates a discrete simulation-based optimization (SO) algorithm for a family of large-scale car-sharing service design problems. We focus on the profit-optimal assignment of vehicle fleet across a network of two-way (i.e., round-trip) car-sharing stations. The proposed approach is a metamodel SO approach. A novel metamodel based on a mixed-integer program (MIP) is formulated. The metamodel is embedded within a general-purpose discrete SO algorithm. The proposed algorithm is validated with synthetic toy network experiments. The algorithm is then applied to a high-dimensional Boston case study using reservation data from a major US car-sharing operator. The method is benchmarked versus several algorithms, including stochastic programming. The experiments indicate that the analytical network model information, provided by the MIP to the SO algorithm, is useful both at the first iteration of the algorithm and across subsequent iterations. The solutions derived by the proposed method are benchmarked versus the solution deployed in the field by the car-sharing operator. Via simulation, the proposed solutions improve those deployed with an average improvement of profit of 6% and of vehicle utilization of 3%.

Suggested Citation

  • Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
  • Handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001431
    DOI: 10.1016/j.trb.2023.102818
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0191261523001431
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.trb.2023.102818?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    2. Firnkorn, Jörg & Müller, Martin, 2011. "What will be the environmental effects of new free-floating car-sharing systems? The case of car2go in Ulm," Ecological Economics, Elsevier, vol. 70(8), pages 1519-1528, June.
    3. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    4. Coll, Marie-Hélène & Vandersmissen, Marie-Hélène & Thériault, Marius, 2014. "Modeling spatio-temporal diffusion of carsharing membership in Québec City," Journal of Transport Geography, Elsevier, vol. 38(C), pages 22-37.
    5. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    6. Zhu, Zheng & Ke, Jintao & Wang, Hai, 2021. "A mean-field Markov decision process model for spatial-temporal subsidies in ride-sourcing markets," Transportation Research Part B: Methodological, Elsevier, vol. 150(C), pages 540-565.
    7. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    8. Francesco Ciari & Milos Balac & Michael Balmer, 2015. "Modelling the effect of different pricing schemes on free-floating carsharing travel demand: a test case for Zurich, Switzerland," Transportation, Springer, vol. 42(3), pages 413-433, May.
    9. Carolina Osorio & Kanchana Nanduri, 2015. "Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach," Transportation Science, INFORMS, vol. 49(3), pages 637-651, August.
    10. Georg Brandstätter & Claudio Gambella & Markus Leitner & Enrico Malaguti & Filippo Masini & Jakob Puchinger & Mario Ruthmair & Daniele Vigo, 2016. "Overview of Optimization Problems in Electric Car-Sharing System Design and Management," Dynamic Modeling and Econometrics in Economics and Finance, in: Herbert Dawid & Karl F. Doerner & Gustav Feichtinger & Peter M. Kort & Andrea Seidl (ed.), Dynamic Perspectives on Managerial Decision Making, pages 441-471, Springer.
    11. Bruce Ankenman & Barry L. Nelson & Jeremy Staum, 2010. "Stochastic Kriging for Simulation Metamodeling," Operations Research, INFORMS, vol. 58(2), pages 371-382, April.
    12. Evan Fields & Carolina Osorio & Tianli Zhou, 2021. "A Data-Driven Method for Reconstructing a Distribution from a Truncated Sample with an Application to Inferring Car-Sharing Demand," Transportation Science, INFORMS, vol. 55(3), pages 616-636, May.
    13. Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
    14. Nair, Rahul & Miller-Hooks, Elise, 2014. "Equilibrium network design of shared-vehicle systems," European Journal of Operational Research, Elsevier, vol. 235(1), pages 47-61.
    15. Francesco Ciari & Claude Weis & Milos Balac, 2016. "Evaluating the influence of carsharing stations’ location on potential membership: a Swiss case study," EURO Journal on Transportation and Logistics, Springer;EURO - The Association of European Operational Research Societies, vol. 5(3), pages 345-369, August.
    16. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    17. Long He & Ho-Yin Mak & Ying Rong & Zuo-Jun Max Shen, 2017. "Service Region Design for Urban Electric Vehicle Sharing Systems," Manufacturing & Service Operations Management, INFORMS, vol. 19(2), pages 309-327, May.
    18. Xiao Chen & Carolina Osorio & Bruno Filipe Santos, 2019. "Simulation-Based Travel Time Reliable Signal Control," Transportation Science, INFORMS, vol. 53(2), pages 523-544, March.
    19. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2017. "An integrated optimization-simulation framework for vehicle and personnel relocations of electric carsharing systems with reservations," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 214-237.
    20. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    21. Correia, Gonçalo Homem de Almeida & Antunes, António Pais, 2012. "Optimization approach to depot location and trip selection in one-way carsharing systems," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 48(1), pages 233-247.
    22. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    23. Stephen E. Chick & Koichiro Inoue, 2001. "New Two-Stage and Sequential Procedures for Selecting the Best Simulated System," Operations Research, INFORMS, vol. 49(5), pages 732-743, October.
    24. Lihua Sun & L. Jeff Hong & Zhaolin Hu, 2014. "Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search," Operations Research, INFORMS, vol. 62(6), pages 1416-1438, December.
    25. Boyacı, Burak & Zografos, Konstantinos G. & Geroliminis, Nikolas, 2015. "An optimization framework for the development of efficient one-way car-sharing systems," European Journal of Operational Research, Elsevier, vol. 240(3), pages 718-733.
    26. Michael Duncan, 2011. "The cost saving potential of carsharing in a US context," Transportation, Springer, vol. 38(2), pages 363-382, March.
    27. L. Jeff Hong & Barry L. Nelson & Jie Xu, 2015. "Discrete Optimization via Simulation," International Series in Operations Research & Management Science, in: Michael C Fu (ed.), Handbook of Simulation Optimization, edition 127, chapter 0, pages 9-44, Springer.
    28. Becker, Henrik & Ciari, Francesco & Axhausen, Kay W., 2017. "Comparing car-sharing schemes in Switzerland: User groups and usage patterns," Transportation Research Part A: Policy and Practice, Elsevier, vol. 97(C), pages 17-29.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    2. Golalikhani, Masoud & Oliveira, Beatriz Brito & Carravilla, Maria Antónia & Oliveira, José Fernando & Antunes, António Pais, 2021. "Carsharing: A review of academic literature and business practices toward an integrated decision-support framework," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 149(C).
    3. Repoux, Martin & Kaspi, Mor & Boyacı, Burak & Geroliminis, Nikolas, 2019. "Dynamic prediction-based relocation policies in one-way station-based carsharing systems with complete journey reservations," Transportation Research Part B: Methodological, Elsevier, vol. 130(C), pages 82-104.
    4. Tay, Timothy & Osorio, Carolina, 2022. "Bayesian optimization techniques for high-dimensional simulation-based transportation problems," Transportation Research Part B: Methodological, Elsevier, vol. 164(C), pages 210-243.
    5. Bansal, Vishal & Kumar, Deepak Prakash & Roy, Debjit & Subramanian, Shankar C., 2022. "Performance evaluation and optimization of design parameters for electric vehicle-sharing platforms by considering vehicle dynamics," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 166(C).
    6. Wu, Peng, 2019. "Which battery-charging technology and insurance contract is preferred in the electric vehicle sharing business?," Transportation Research Part A: Policy and Practice, Elsevier, vol. 124(C), pages 537-548.
    7. Illgen, Stefan & Höck, Michael, 2019. "Literature review of the vehicle relocation problem in one-way car sharing networks," Transportation Research Part B: Methodological, Elsevier, vol. 120(C), pages 193-204.
    8. Joy Chang & Miao Yu & Siqian Shen & Ming Xu, 2017. "Location Design and Relocation of a Mixed Car-Sharing Fleet with a CO 2 Emission Constraint," Service Science, INFORMS, vol. 9(3), pages 205-218, September.
    9. Xu, Min & Meng, Qiang, 2019. "Fleet sizing for one-way electric carsharing services considering dynamic vehicle relocation and nonlinear charging profile," Transportation Research Part B: Methodological, Elsevier, vol. 128(C), pages 23-49.
    10. Yang, Jie & Hu, Lu & Jiang, Yangsheng, 2022. "An overnight relocation problem for one-way carsharing systems considering employment planning, return restrictions, and ride sharing of temporary workers," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 168(C).
    11. Çalık, Hatice & Fortz, Bernard, 2019. "A Benders decomposition method for locating stations in a one-way electric car sharing system under demand uncertainty," Transportation Research Part B: Methodological, Elsevier, vol. 125(C), pages 121-150.
    12. Xiqun (Michael) Chen & Xiang He & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2019. "A Bayesian Stochastic Kriging Optimization Model Dealing with Heteroscedastic Simulation Noise for Freeway Traffic Management," Transportation Science, INFORMS, vol. 53(2), pages 545-565, March.
    13. Snoeck, André & Winkenbach, Matthias & Fransoo, Jan C., 2023. "On-demand last-mile distribution network design with omnichannel inventory," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 180(C).
    14. Snoeck, André & Winkenbach, Matthias & Fransoo, Jan C., 2023. "On-demand last-mile distribution network design with omnichannel inventory," Other publications TiSEM 83b06c9f-2a65-4aaf-880b-2, Tilburg University, School of Economics and Management.
    15. Deniz Preil & Michael Krapp, 2023. "Genetic multi-armed bandits: a reinforcement learning approach for discrete optimization via simulation," Papers 2302.07695, arXiv.org.
    16. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    17. Xuefei Lu & Alessandro Rudi & Emanuele Borgonovo & Lorenzo Rosasco, 2020. "Faster Kriging: Facing High-Dimensional Simulators," Operations Research, INFORMS, vol. 68(1), pages 233-249, January.
    18. Philipp Ströhle & Christoph M. Flath & Johannes Gärttner, 2019. "Leveraging Customer Flexibility for Car-Sharing Fleet Optimization," Service Science, INFORMS, vol. 53(1), pages 42-61, February.
    19. Fanchao Liao & Eric Molin & Harry Timmermans & Bert van Wee, 2020. "Carsharing: the impact of system characteristics on its potential to replace private car trips and reduce car ownership," Transportation, Springer, vol. 47(2), pages 935-970, April.
    20. Lu, Xiaonong & Zhang, Qiang & Peng, Zhanglin & Shao, Zhen & Song, Hao & Wang, Wanying, 2020. "Charging and relocating optimization for electric vehicle car-sharing: An event-based strategy improvement approach," Energy, Elsevier, vol. 207(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transb:v:178:y:2023:i:c:s0191261523001431. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/548/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.