IDEAS home Printed from https://ideas.repec.org/a/spr/annopr/v240y2016i1d10.1007_s10479-015-2019-x.html
   My bibliography  Save this article

Simulation optimization: a review of algorithms and applications

Author

Listed:
  • Satyajith Amaran

    (Carnegie Mellon University
    The Dow Chemical Company)

  • Nikolaos V. Sahinidis

    (Carnegie Mellon University)

  • Bikram Sharda

    (The Dow Chemical Company)

  • Scott J. Bury

    (The Dow Chemical Company)

Abstract

Simulation optimization (SO) refers to the optimization of an objective function subject to constraints, both of which can be evaluated through a stochastic simulation. To address specific features of a particular simulation—discrete or continuous decisions, expensive or cheap simulations, single or multiple outputs, homogeneous or heterogeneous noise—various algorithms have been proposed in the literature. As one can imagine, there exist several competing algorithms for each of these classes of problems. This document emphasizes the difficulties in SO as compared to algebraic model-based mathematical programming, makes reference to state-of-the-art algorithms in the field, examines and contrasts the different approaches used, reviews some of the diverse applications that have been tackled by these methods, and speculates on future directions in the field.

Suggested Citation

  • Satyajith Amaran & Nikolaos V. Sahinidis & Bikram Sharda & Scott J. Bury, 2016. "Simulation optimization: a review of algorithms and applications," Annals of Operations Research, Springer, vol. 240(1), pages 351-380, May.
  • Handle: RePEc:spr:annopr:v:240:y:2016:i:1:d:10.1007_s10479-015-2019-x
    DOI: 10.1007/s10479-015-2019-x
    as

    Download full text from publisher

    File URL: http://link.springer.com/10.1007/s10479-015-2019-x
    File Function: Abstract
    Download Restriction: Access to the full text of the articles in this series is restricted.

    File URL: https://libkey.io/10.1007/s10479-015-2019-x?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Jack Kleijnen & Wim Beers & Inneke Nieuwenhuyse, 2012. "Expected improvement in efficient global optimization through bootstrapped kriging," Journal of Global Optimization, Springer, vol. 54(1), pages 59-73, September.
    2. Michael C. Fu, 2002. "Feature Article: Optimization for simulation: Theory vs. Practice," INFORMS Journal on Computing, INFORMS, vol. 14(3), pages 192-215, August.
    3. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    4. Colin R. Reeves, 1997. "Feature Article---Genetic Algorithms for the Operations Researcher," INFORMS Journal on Computing, INFORMS, vol. 9(3), pages 231-250, August.
    5. Kleijnen, Jack P.C., 2009. "Kriging metamodeling in simulation: A review," European Journal of Operational Research, Elsevier, vol. 192(3), pages 707-716, February.
    6. Bettonvil, Bert & del Castillo, Enrique & Kleijnen, Jack P.C., 2009. "Statistical testing of optimality conditions in multiresponse simulation-based optimization," European Journal of Operational Research, Elsevier, vol. 199(2), pages 448-458, December.
    7. Mahmoud H. Alrefaei & Sigrún Andradóttir, 1999. "A Simulated Annealing Algorithm with Constant Temperature for Discrete Stochastic Optimization," Management Science, INFORMS, vol. 45(5), pages 748-764, May.
    8. L. Jeff Hong & Barry L. Nelson, 2006. "Discrete Optimization via Simulation Using COMPASS," Operations Research, INFORMS, vol. 54(1), pages 115-129, February.
    9. De Angelis, Vanda & Felici, Giovanni & Impelluso, Paolo, 2003. "Integrating simulation and optimisation in health care centre management," European Journal of Operational Research, Elsevier, vol. 150(1), pages 101-114, October.
    10. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    11. Kleijnen, Jack P. C. & van Beers, Wim C. M., 2005. "Robustness of Kriging when interpolating in random simulation with heterogeneous variances: Some experiments," European Journal of Operational Research, Elsevier, vol. 165(3), pages 826-834, September.
    12. Reuven Rubinstein, 1999. "The Cross-Entropy Method for Combinatorial and Continuous Optimization," Methodology and Computing in Applied Probability, Springer, vol. 1(2), pages 127-190, September.
    13. Neddermeijer, H.G. & van Oortmarssen, G.J. & Piersma, N. & Dekker, R., 2000. "A framework for response surface methodology for simulation optimization," Econometric Institute Research Papers EI 2000-14/A, Erasmus University Rotterdam, Erasmus School of Economics (ESE), Econometric Institute.
    14. Luis Rios & Nikolaos Sahinidis, 2013. "Derivative-free optimization: a review of algorithms and comparison of software implementations," Journal of Global Optimization, Springer, vol. 56(3), pages 1247-1293, July.
    15. Merton, Robert C, 1974. "On the Pricing of Corporate Debt: The Risk Structure of Interest Rates," Journal of Finance, American Finance Association, vol. 29(2), pages 449-470, May.
    16. Yeomans, Julian Scott, 2007. "Solid waste planning under uncertainty using evolutionary simulation-optimization," Socio-Economic Planning Sciences, Elsevier, vol. 41(1), pages 38-60, March.
    17. Russell R. Barton & John S. Ivey, Jr., 1996. "Nelder-Mead Simplex Modifications for Simulation Optimization," Management Science, INFORMS, vol. 42(7), pages 954-973, July.
    18. Dengiz, Berna & Akbay, Kunter S., 2000. "Computer simulation of a PCB production line: metamodeling approach," International Journal of Production Economics, Elsevier, vol. 63(2), pages 195-205, January.
    19. Jack P.C. Kleijnen, 2015. "Design and Analysis of Simulation Experiments," International Series in Operations Research and Management Science, Springer, edition 2, number 978-3-319-18087-8, January.
    20. Bruce Hajek, 1988. "Cooling Schedules for Optimal Annealing," Mathematics of Operations Research, INFORMS, vol. 13(2), pages 311-329, May.
    21. Fred Glover, 1990. "Tabu Search: A Tutorial," Interfaces, INFORMS, vol. 20(4), pages 74-94, August.
    22. Dirk P. Kroese & Sergey Porotsky & Reuven Y. Rubinstein, 2006. "The Cross-Entropy Method for Continuous Multi-Extremal Optimization," Methodology and Computing in Applied Probability, Springer, vol. 8(3), pages 383-407, September.
    23. Alkhamis, Talal M. & Ahmed, Mohamed A. & Tuan, Vu Kim, 1999. "Simulated annealing for discrete optimization with estimation," European Journal of Operational Research, Elsevier, vol. 116(3), pages 530-544, August.
    24. Susan R. Hunter & Raghu Pasupathy, 2013. "Optimal Sampling Laws for Stochastically Constrained Simulation Optimization on Finite Sets," INFORMS Journal on Computing, INFORMS, vol. 25(3), pages 527-542, August.
    25. Chang, Kuo-Hao, 2012. "Stochastic Nelder–Mead simplex method – A new globally convergent direct search method for simulation optimization," European Journal of Operational Research, Elsevier, vol. 220(3), pages 684-694.
    26. D. Huang & T. Allen & W. Notz & N. Zeng, 2006. "Global Optimization of Stochastic Black-Box Systems via Sequential Kriging Meta-Models," Journal of Global Optimization, Springer, vol. 34(3), pages 441-466, March.
    27. Marti, Rafael & Laguna, Manuel & Glover, Fred, 2006. "Principles of scatter search," European Journal of Operational Research, Elsevier, vol. 169(2), pages 359-372, March.
    28. Jiaqiao Hu & Michael C. Fu & Steven I. Marcus, 2007. "A Model Reference Adaptive Search Method for Global Optimization," Operations Research, INFORMS, vol. 55(3), pages 549-568, June.
    29. YalçInkaya, Özgür & Mirac Bayhan, G., 2009. "Modelling and optimization of average travel time for a metro line by simulation and response surface methodology," European Journal of Operational Research, Elsevier, vol. 196(1), pages 225-233, July.
    30. Jing Xie & Peter I. Frazier, 2013. "Sequential Bayes-Optimal Policies for Multiple Comparisons with a Known Standard," Operations Research, INFORMS, vol. 61(5), pages 1174-1189, October.
    31. Roustant, Olivier & Ginsbourger, David & Deville, Yves, 2012. "DiceKriging, DiceOptim: Two R Packages for the Analysis of Computer Experiments by Kriging-Based Metamodeling and Optimization," Journal of Statistical Software, Foundation for Open Access Statistics, vol. 51(i01).
    32. Robin P. Nicolai & Rommert Dekker, 2005. "Automated Response Surface Methodology for Stochastic Optimization Models with Unknown Variance," Tinbergen Institute Discussion Papers 05-042/4, Tinbergen Institute.
    33. Barry L. Nelson & David Goldsman, 2001. "Comparisons with a Standard in Simulation Experiments," Management Science, INFORMS, vol. 47(3), pages 449-463, March.
    34. E Angün & J Kleijnen & D den Hertog & G Gürkan, 2009. "Response surface methodology with stochastic constraints for expensive simulation," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 60(6), pages 735-746, June.
    35. C. P. Stephens & W. Baritompa, 1998. "Global Optimization Requires Global Information," Journal of Optimization Theory and Applications, Springer, vol. 96(3), pages 575-588, March.
    36. Pieter-Tjerk de Boer & Dirk Kroese & Shie Mannor & Reuven Rubinstein, 2005. "A Tutorial on the Cross-Entropy Method," Annals of Operations Research, Springer, vol. 134(1), pages 19-67, February.
    37. Lutz, Christian M. & Roscoe Davis, K. & Sun, Minghe, 1998. "Determining buffer location and size in production lines using tabu search," European Journal of Operational Research, Elsevier, vol. 106(2-3), pages 301-316, April.
    38. David G. Humphrey & James R. Wilson, 2000. "A Revised Simplex Search Procedure for Stochastic Simulation Response Surface Optimization," INFORMS Journal on Computing, INFORMS, vol. 12(4), pages 272-283, November.
    39. Peter Frazier & Warren Powell & Savas Dayanik, 2009. "The Knowledge-Gradient Policy for Correlated Normal Beliefs," INFORMS Journal on Computing, INFORMS, vol. 21(4), pages 599-613, November.
    40. Driessen, L., 2006. "Simulation-based optimization for product and process design," Other publications TiSEM 51ceee70-3c0a-44a6-a2bd-5, Tilburg University, School of Economics and Management.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. M Laguna & J Molina & F Pérez & R Caballero & A G Hernández-Díaz, 2010. "The challenge of optimizing expensive black boxes: a scatter search/rough set theory approach," Journal of the Operational Research Society, Palgrave Macmillan;The OR Society, vol. 61(1), pages 53-67, January.
    2. Enlu Zhou & Shalabh Bhatnagar, 2018. "Gradient-Based Adaptive Stochastic Search for Simulation Optimization Over Continuous Space," INFORMS Journal on Computing, INFORMS, vol. 30(1), pages 154-167, February.
    3. Andrei A. Prudius & Sigrún Andradóttir, 2012. "Averaging frameworks for simulation optimization with applications to simulated annealing," Naval Research Logistics (NRL), John Wiley & Sons, vol. 59(6), pages 411-429, September.
    4. Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.
    5. Kabirian, Alireza & Ólafsson, Sigurdur, 2011. "Continuous optimization via simulation using Golden Region search," European Journal of Operational Research, Elsevier, vol. 208(1), pages 19-27, January.
    6. Jalali, Hamed & Van Nieuwenhuyse, Inneke & Picheny, Victor, 2017. "Comparison of Kriging-based algorithms for simulation optimization with heterogeneous noise," European Journal of Operational Research, Elsevier, vol. 261(1), pages 279-301.
    7. Kuo-Hao Chang & L. Jeff Hong & Hong Wan, 2013. "Stochastic Trust-Region Response-Surface Method (STRONG)---A New Response-Surface Framework for Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 25(2), pages 230-243, May.
    8. Fu, Quanlu & Wu, Jiyan & Wu, Xuemian & Sun, Jian & Tian, Ye, 2024. "Managing network congestion with link-based incentives: A surrogate-based optimization approach," Transportation Research Part A: Policy and Practice, Elsevier, vol. 182(C).
    9. Dawei Zhan & Huanlai Xing, 2020. "Expected improvement for expensive optimization: a review," Journal of Global Optimization, Springer, vol. 78(3), pages 507-544, November.
    10. Jie Xu & Barry L. Nelson & L. Jeff Hong, 2013. "An Adaptive Hyperbox Algorithm for High-Dimensional Discrete Optimization via Simulation Problems," INFORMS Journal on Computing, INFORMS, vol. 25(1), pages 133-146, February.
    11. Zheng Peng & Donghua Wu & Quan Zheng, 2013. "A Level-Value Estimation Method and Stochastic Implementation for Global Optimization," Journal of Optimization Theory and Applications, Springer, vol. 156(2), pages 493-523, February.
    12. Zheng Peng & Donghua Wu & Wenxing Zhu, 2016. "The robust constant and its applications in random global search for unconstrained global optimization," Journal of Global Optimization, Springer, vol. 64(3), pages 469-482, March.
    13. Jing Xie & Peter I. Frazier & Stephen E. Chick, 2016. "Bayesian Optimization via Simulation with Pairwise Sampling and Correlated Prior Beliefs," Operations Research, INFORMS, vol. 64(2), pages 542-559, April.
    14. Qi Zhang & Jiaqiao Hu, 2019. "Simulation Optimization Using Multi-Time-Scale Adaptive Random Search," Asia-Pacific Journal of Operational Research (APJOR), World Scientific Publishing Co. Pte. Ltd., vol. 36(06), pages 1-34, December.
    15. Chuljin Park & Seong-Hee Kim, 2015. "Penalty Function with Memory for Discrete Optimization via Simulation with Stochastic Constraints," Operations Research, INFORMS, vol. 63(5), pages 1195-1212, October.
    16. Chang, Kuo-Hao & Chen, Tzu-Li & Yang, Fu-Hao & Chang, Tzu-Yin, 2023. "Simulation optimization for stochastic casualty collection point location and resource allocation problem in a mass casualty incident," European Journal of Operational Research, Elsevier, vol. 309(3), pages 1237-1262.
    17. Lihua Sun & L. Jeff Hong & Zhaolin Hu, 2014. "Balancing Exploitation and Exploration in Discrete Optimization via Simulation Through a Gaussian Process-Based Search," Operations Research, INFORMS, vol. 62(6), pages 1416-1438, December.
    18. Alfieri, Arianna & Matta, Andrea, 2012. "Mathematical programming formulations for approximate simulation of multistage production systems," European Journal of Operational Research, Elsevier, vol. 219(3), pages 773-783.
    19. Xi Chen & Enlu Zhou, 2015. "Population model-based optimization," Journal of Global Optimization, Springer, vol. 63(1), pages 125-148, September.
    20. Qi Fan & Jiaqiao Hu, 2018. "Surrogate-Based Promising Area Search for Lipschitz Continuous Simulation Optimization," INFORMS Journal on Computing, INFORMS, vol. 30(4), pages 677-693, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:spr:annopr:v:240:y:2016:i:1:d:10.1007_s10479-015-2019-x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Sonal Shukla or Springer Nature Abstracting and Indexing (email available below). General contact details of provider: http://www.springer.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.