IDEAS home Printed from https://ideas.repec.org/a/inm/ortrsc/v49y2015i3p623-636.html
   My bibliography  Save this article

A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems

Author

Listed:
  • Carolina Osorio

    (Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

  • Linsen Chong

    (Civil and Environmental Engineering Department, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139)

Abstract

This paper proposes a computationally efficient simulation-based optimization (SO) algorithm suitable to address large-scale generally constrained urban transportation problems. The algorithm is based on a novel metamodel formulation. We embed the metamodel within a derivative-free trust region algorithm and evaluate the performance of this SO approach considering tight computational budgets. We address a network-wide traffic signal control problem using a calibrated microscopic simulation model of evening peak period traffic of the full city of Lausanne, Switzerland, which consists of more than 600 links and 200 intersections. We control 99 signal phases of 17 intersections distributed throughout the entire network. This SO problem is a high-dimensional nonlinear constrained problem. It is considered large-scale and complex in the fields of derivative-free optimization, traffic signal optimization, and simulation-based optimization. We compare the performance of the proposed metamodel method to that of a traditional metamodel method and that of a widely used commercial signal control software. The proposed method systematically and efficiently identifies signal plans with improved average city-wide travel times.

Suggested Citation

  • Carolina Osorio & Linsen Chong, 2015. "A Computationally Efficient Simulation-Based Optimization Algorithm for Large-Scale Urban Transportation Problems," Transportation Science, INFORMS, vol. 49(3), pages 623-636, August.
  • Handle: RePEc:inm:ortrsc:v:49:y:2015:i:3:p:623-636
    DOI: 10.1287/trsc.2014.0550
    as

    Download full text from publisher

    File URL: http://dx.doi.org/10.1287/trsc.2014.0550
    Download Restriction: no

    File URL: https://libkey.io/10.1287/trsc.2014.0550?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    References listed on IDEAS

    as
    1. Hachicha, Wafik & Ammeri, Ahmed & Masmoudi, Faouzi & Chachoub, Habib, 2010. "A comprehensive literature classification of simulation optimisation methods," MPRA Paper 27652, University Library of Munich, Germany.
    2. Kleijnen, J.P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2008. "Constrained Optimization in Simulation : A Novel Approach," Other publications TiSEM e49ba0fc-853c-4a13-b564-d, Tilburg University, School of Economics and Management.
    3. Carolina Osorio & Kanchana Nanduri, 2015. "Energy-Efficient Urban Traffic Management: A Microscopic Simulation-Based Approach," Transportation Science, INFORMS, vol. 49(3), pages 637-651, August.
    4. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    5. Kleijnen, Jack P.C. & Beers, Wim van & Nieuwenhuyse, Inneke van, 2010. "Constrained optimization in expensive simulation: Novel approach," European Journal of Operational Research, Elsevier, vol. 202(1), pages 164-174, April.
    6. Kurt Marti, 2008. "Stochastic Optimization Methods," Springer Books, Springer, number 978-3-540-79458-5, June.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zheng, Liang & Xue, Xinfeng & Xu, Chengcheng & Ran, Bin, 2019. "A stochastic simulation-based optimization method for equitable and efficient network-wide signal timing under uncertainties," Transportation Research Part B: Methodological, Elsevier, vol. 122(C), pages 287-308.
    2. Osorio, Carolina, 2019. "High-dimensional offline origin-destination (OD) demand calibration for stochastic traffic simulators of large-scale road networks," Transportation Research Part B: Methodological, Elsevier, vol. 124(C), pages 18-43.
    3. Zhou, Tianli & Fields, Evan & Osorio, Carolina, 2023. "A data-driven discrete simulation-based optimization algorithm for car-sharing service design," Transportation Research Part B: Methodological, Elsevier, vol. 178(C).
    4. Carolina Osorio & Michel Bierlaire, 2013. "A Simulation-Based Optimization Framework for Urban Transportation Problems," Operations Research, INFORMS, vol. 61(6), pages 1333-1345, December.
    5. Strang, Kenneth David, 2012. "Importance of verifying queue model assumptions before planning with simulation software," European Journal of Operational Research, Elsevier, vol. 218(2), pages 493-504.
    6. Kleijnen, Jack P.C. & van Beers, W.C.M. & van Nieuwenhuyse, I., 2011. "Expected Improvement in Efficient Global Optimization Through Bootstrapped Kriging - Replaces CentER DP 2010-62," Discussion Paper 2011-015, Tilburg University, Center for Economic Research.
    7. Dhahri, Akrem & Gharbi, Ali & Ouhimmou, Mustapha, 2022. "Integrated production-delivery control policy for an unreliable manufacturing system and multiple retailers," International Journal of Production Economics, Elsevier, vol. 245(C).
    8. Osorio, Carolina & Wang, Carter, 2017. "On the analytical approximation of joint aggregate queue-length distributions for traffic networks: A stationary finite capacity Markovian network approach," Transportation Research Part B: Methodological, Elsevier, vol. 95(C), pages 305-339.
    9. Kleijnen, Jack P.C., 2017. "Regression and Kriging metamodels with their experimental designs in simulation: A review," European Journal of Operational Research, Elsevier, vol. 256(1), pages 1-16.
    10. Othmane Benmoussa, 2022. "Improving Replenishment Flows Using Simulation Results: A Case Study," Logistics, MDPI, vol. 6(2), pages 1-26, May.
    11. Hyoshin (John) Park & Ali Haghani & Song Gao & Michael A. Knodler & Siby Samuel, 2018. "Anticipatory Dynamic Traffic Sensor Location Problems with Connected Vehicle Technologies," Service Science, INFORMS, vol. 52(6), pages 1299-1326, December.
    12. Miranda, Rafael de Carvalho & Montevechi, José Arnaldo Barra & da Silva, Aneirson Francisco & Marins, Fernando Augusto Silva, 2017. "Increasing the efficiency in integer simulation optimization: Reducing the search space through data envelopment analysis and orthogonal arrays," European Journal of Operational Research, Elsevier, vol. 262(2), pages 673-681.
    13. Kim, Nayeon & Montreuil, Benoit & Klibi, Walid & Kholgade, Nitish, 2021. "Hyperconnected urban fulfillment and delivery," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 145(C).
    14. Zhang, Chao & Osorio, Carolina & Flötteröd, Gunnar, 2017. "Efficient calibration techniques for large-scale traffic simulators," Transportation Research Part B: Methodological, Elsevier, vol. 97(C), pages 214-239.
    15. Hernandez, Andres F. & Grover, Martha A., 2013. "Error estimation properties of Gaussian process models in stochastic simulations," European Journal of Operational Research, Elsevier, vol. 228(1), pages 131-140.
    16. Zhongshun Shi & Siyang Gao & Hui Xiao & Weiwei Chen, 2019. "A worst‐case formulation for constrained ranking and selection with input uncertainty," Naval Research Logistics (NRL), John Wiley & Sons, vol. 66(8), pages 648-662, December.
    17. Hainan Guo & Haobin Gu & Yu Zhou & Jiaxuan Peng, 2022. "A data-driven multi-fidelity simulation optimization for medical staff configuration at an emergency department in Hong Kong," Flexible Services and Manufacturing Journal, Springer, vol. 34(2), pages 238-262, June.
    18. Wang, Yi & Szeto, W.Y. & Han, Ke & Friesz, Terry L., 2018. "Dynamic traffic assignment: A review of the methodological advances for environmentally sustainable road transportation applications," Transportation Research Part B: Methodological, Elsevier, vol. 111(C), pages 370-394.
    19. Xiang He & Xiqun (Michael) Chen & Chenfeng Xiong & Zheng Zhu & Lei Zhang, 2017. "Optimal Time-Varying Pricing for Toll Roads Under Multiple Objectives: A Simulation-Based Optimization Approach," Transportation Science, INFORMS, vol. 51(2), pages 412-426, May.
    20. Kleijnen, Jack P.C., 2013. "Simulation-Optimization via Kriging and Bootstrapping : A Survey (Revision of CentER DP 2011-064)," Discussion Paper 2013-064, Tilburg University, Center for Economic Research.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:inm:ortrsc:v:49:y:2015:i:3:p:623-636. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Chris Asher (email available below). General contact details of provider: https://edirc.repec.org/data/inforea.html .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.