IDEAS home Printed from https://ideas.repec.org/a/eee/transe/v191y2024ics1366554524003399.html
   My bibliography  Save this article

Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction

Author

Listed:
  • Mo, Xiaoyu
  • Xing, Yang
  • Lv, Chen

Abstract

Predicting the trajectories of neighboring vehicles is vital for self-driving cars in intricate real-world driving. The challenge lies in accounting for diverse influences on a vehicle’s movement, travel needs, neighboring vehicles, and a local map. To address these factors comprehensively, we have developed a framework with a Heterogeneous Graph Social (HGS) pooling approach. The framework represents vehicles and infrastructures in a single graph, with vehicle nodes holding historical dynamics information and infrastructure nodes containing spatial features from map images. HGS captures vehicle–infrastructure interactions in urban driving. Unlike existing methods that are restricted to a fixed vehicle count and highway settings, HGS can accommodate variable interactions and road layouts. By merging all features, our approach predicts the target vehicle’s future path. Experiments on real-world data confirm HGS’s superiority, boasting quicker training and inference, affirming its feasibility, effectiveness, and efficiency.

Suggested Citation

  • Mo, Xiaoyu & Xing, Yang & Lv, Chen, 2024. "Heterogeneous graph social pooling for interaction-aware vehicle trajectory prediction," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 191(C).
  • Handle: RePEc:eee:transe:v:191:y:2024:i:c:s1366554524003399
    DOI: 10.1016/j.tre.2024.103748
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1366554524003399
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.tre.2024.103748?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:transe:v:191:y:2024:i:c:s1366554524003399. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    We have no bibliographic references for this item. You can help adding them by using this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600244/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.