LNG Regasification Terminals: The Role of Geography and Meteorology on Technology Choices
Author
Abstract
Suggested Citation
Download full text from publisher
References listed on IDEAS
- Zhang, Na & Lior, Noam, 2006. "A novel near-zero CO2 emission thermal cycle with LNG cryogenic exergy utilization," Energy, Elsevier, vol. 31(10), pages 1666-1679.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Arnaiz del Pozo, Carlos & Cloete, Schalk & Jiménez Álvaro, Ángel, 2024. "Techno-economic assessment of integrated NH3-power co-production with CCS and energy storage in an LNG regasification terminal," Applied Energy, Elsevier, vol. 356(C).
- Filip Lisowski & Edward Lisowski, 2022. "Influence of Longitudinal Fin Tubes Arrangement in LNG Ambient Air Vaporizers on the Wind Load," Energies, MDPI, vol. 15(2), pages 1-11, January.
- Peters, Toby & Sayin, Leyla, 2022. "The Cold Economy," ADBI Working Papers 1326, Asian Development Bank Institute.
- Markéta Mikolajková-Alifov & Frank Pettersson & Margareta Björklund-Sänkiaho & Henrik Saxén, 2019. "A Model of Optimal Gas Supply to a Set of Distributed Consumers," Energies, MDPI, vol. 12(3), pages 1-27, January.
- Zhang, Jinrui & Meerman, Hans & Benders, René & Faaij, André, 2021. "Techno-economic and life cycle greenhouse gas emissions assessment of liquefied natural gas supply chain in China," Energy, Elsevier, vol. 224(C).
- Maytungkorn Sermsuk & Yanin Sukjai & Montri Wiboonrat & Kunlanan Kiatkittipong, 2021. "Utilising Cold Energy from Liquefied Natural Gas (LNG) to Reduce the Electricity Cost of Data Centres," Energies, MDPI, vol. 14(19), pages 1-17, October.
- Peters, Toby & Sayin, Leylan, 2022. "Future-Proofing Sustainable Cooling Demand," ADBI Working Papers 1316, Asian Development Bank Institute.
- Zheng, Siyang & Li, Chenghao & Zeng, Zhiyong, 2022. "Thermo-economic analysis, working fluids selection, and cost projection of a precooler-integrated dual-stage combined cycle (PIDSCC) system utilizing cold exergy of liquefied natural gas," Energy, Elsevier, vol. 238(PC).
- Gordon, Jeffrey M. & Moses, Gilad & Katz, Eugene A., 2021. "Boosting silicon photovoltaic efficiency from regasification of liquefied natural gas," Energy, Elsevier, vol. 214(C).
- Sermsuk, Maytungkorn & Sukjai, Yanin & Wiboonrat, Montri & Kiatkittipong, Kunlanan, 2022. "Feasibility study of a combined system of electricity generation and cooling from liquefied natural gas to reduce the electricity cost of data centres," Energy, Elsevier, vol. 254(PA).
- Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
- Agnieszka Magdalena Kalbarczyk-Jedynak & Magdalena Ślączka-Wilk & Magdalena Kaup & Wojciech Ślączka & Dorota Łozowicka, 2022. "Assessment of Explosion Safety Status within the Area of an LNG Terminal in a Function of Selected Parameters," Energies, MDPI, vol. 15(11), pages 1-34, May.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Liang, Ying & Cai, Lei & Guan, Yanwen & Liu, Wenbin & Xiang, Yanlei & Li, Juan & He, Tianzhi, 2020. "Numerical study on an original oxy-fuel combustion power plant with efficient utilization of flue gas waste heat," Energy, Elsevier, vol. 193(C).
- Tomków, Łukasz & Cholewiński, Maciej, 2015. "Improvement of the LNG (liquid natural gas) regasification efficiency by utilizing the cold exergy with a coupled absorption – ORC (organic Rankine cycle)," Energy, Elsevier, vol. 87(C), pages 645-653.
- Sun, Zhixin & Xu, Fuquan & Wang, Shujia & Lai, Jianpeng & Lin, Kui, 2017. "Comparative study of Rankine cycle configurations utilizing LNG cold energy under different NG distribution pressures," Energy, Elsevier, vol. 139(C), pages 380-393.
- Wang, Jiangfeng & Yan, Zhequan & Wang, Man & Dai, Yiping, 2013. "Thermodynamic analysis and optimization of an ammonia-water power system with LNG (liquefied natural gas) as its heat sink," Energy, Elsevier, vol. 50(C), pages 513-522.
- Cheng, Kunlin & Qin, Jiang & Zhang, Duo & Bao, Wen & Jing, Wuxing, 2022. "Performance evaluation for a combined power generation system of closed-Brayton-cycle and thermoelectric generator with finite cold source at room temperature on hypersonic vehicles," Energy, Elsevier, vol. 254(PC).
- Choi, In-Hwan & Lee, Sangick & Seo, Yutaek & Chang, Daejun, 2013. "Analysis and optimization of cascade Rankine cycle for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 61(C), pages 179-195.
- Liu, Zhan & Zhang, Yilun & Lv, Xinyu & Zhang, Yao & Liu, Junwei & Su, Chuanqi & Liu, Xianglei, 2023. "An electricity supply system by recovering the waste heat of commercial aeroengine," Energy, Elsevier, vol. 283(C).
- Crespi, Francesco & Gavagnin, Giacomo & Sánchez, David & Martínez, Gonzalo S., 2017. "Supercritical carbon dioxide cycles for power generation: A review," Applied Energy, Elsevier, vol. 195(C), pages 152-183.
- Kumar, Satish & Kwon, Hyouk-Tae & Choi, Kwang-Ho & Lim, Wonsub & Cho, Jae Hyun & Tak, Kyungjae & Moon, Il, 2011. "LNG: An eco-friendly cryogenic fuel for sustainable development," Applied Energy, Elsevier, vol. 88(12), pages 4264-4273.
- Aspelund, Audun & Gundersen, Truls, 2009. "A liquefied energy chain for transport and utilization of natural gas for power production with CO2 capture and storage - Part 1," Applied Energy, Elsevier, vol. 86(6), pages 781-792, June.
- Gang Xu & Feifei Liang & Yongping Yang & Yue Hu & Kai Zhang & Wenyi Liu, 2014. "An Improved CO 2 Separation and Purification System Based on Cryogenic Separation and Distillation Theory," Energies, MDPI, vol. 7(5), pages 1-19, May.
- Wang, Xiu & Zhao, Liang & Zhang, Lihui & Zhang, Menghui & Dong, Hui, 2019. "A novel combined system for LNG cold energy utilization to capture carbon dioxide in the flue gas from the magnesite processing industry," Energy, Elsevier, vol. 187(C).
- Xu, Gang & Li, Le & Yang, Yongping & Tian, Longhu & Liu, Tong & Zhang, Kai, 2012. "A novel CO2 cryogenic liquefaction and separation system," Energy, Elsevier, vol. 42(1), pages 522-529.
- Sun, Heng & Zhu, Hongmei & Liu, Feng & Ding, He, 2014. "Simulation and optimization of a novel Rankine power cycle for recovering cold energy from liquefied natural gas using a mixed working fluid," Energy, Elsevier, vol. 70(C), pages 317-324.
- Cheng, Kunlin & Yu, Jianchi & Dang, Chaolei & Qin, Jiang & Jing, Wuxing, 2024. "Performance comparison between closed-Brayton-cycle power generation systems using supercritical carbon dioxide and helium–xenon mixture at ultra-high turbine inlet temperatures on hypersonic vehicles," Energy, Elsevier, vol. 293(C).
- Chen, Yaping & Zhu, Zilong & Wu, Jiafeng & Yang, Shifan & Zhang, Baohuai, 2017. "A novel LNG/O2 combustion gas and steam mixture cycle with energy storage and CO2 capture," Energy, Elsevier, vol. 120(C), pages 128-137.
- Ghorbani, Bahram & Mahyari, Kimiya Borzoo & Mehrpooya, Mehdi & Hamedi, Mohammad-Hossein, 2020. "Introducing a hybrid renewable energy system for production of power and fresh water using parabolic trough solar collectors and LNG cold energy recovery," Renewable Energy, Elsevier, vol. 148(C), pages 1227-1243.
- Xia, Guanghui & Sun, Qingxuan & Cao, Xu & Wang, Jiangfeng & Yu, Yizhao & Wang, Laisheng, 2014. "Thermodynamic analysis and optimization of a solar-powered transcritical CO2 (carbon dioxide) power cycle for reverse osmosis desalination based on the recovery of cryogenic energy of LNG (liquefied n," Energy, Elsevier, vol. 66(C), pages 643-653.
- Zhang, Na & Lior, Noam & Liu, Meng & Han, Wei, 2010. "COOLCEP (cool clean efficient power): A novel CO2-capturing oxy-fuel power system with LNG (liquefied natural gas) coldness energy utilization," Energy, Elsevier, vol. 35(2), pages 1200-1210.
- Liu, Zhiqiang & Tao, Tianfeng & Deng, Chengwei & Yang, Sheng, 2023. "Proposal and analysis of a novel CCHP system based on SOFC for coalbed methane recovery," Energy, Elsevier, vol. 283(C).
More about this item
Keywords
liquefied natural gas (LNG) cold energy; LNG; vaporizer; regasification; meteorology; geography; climate change;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:10:y:2017:i:12:p:2152-:d:123207. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.