Simultaneous capture of acid gases from natural gas adopting ionic liquids: Challenges, recent developments, and prospects
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2020.109771
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Xiao, Min & Liu, Helei & Gao, Hongxia & Olson, Wilfred & Liang, Zhiwu, 2019. "CO2 capture with hybrid absorbents of low viscosity imidazolium-based ionic liquids and amine," Applied Energy, Elsevier, vol. 235(C), pages 311-319.
- Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
- Abdolahi-Mansoorkhani, Hamed & Seddighi, Sadegh, 2019. "H2S and CO2 capture from gaseous fuels using nanoparticle membrane," Energy, Elsevier, vol. 168(C), pages 847-857.
- Sreedhar, I. & Vaidhiswaran, R. & Kamani, Bansi. M. & Venugopal, A., 2017. "Process and engineering trends in membrane based carbon capture," Renewable and Sustainable Energy Reviews, Elsevier, vol. 68(P1), pages 659-684.
- Sreedhar, I. & Nahar, Tanisha & Venugopal, A. & Srinivas, B., 2017. "Carbon capture by absorption – Path covered and ahead," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1080-1107.
- Halder, Pobitra & Kundu, Sazal & Patel, Savankumar & Setiawan, Adi & Atkin, Rob & Parthasarthy, Rajarathinam & Paz-Ferreiro, Jorge & Surapaneni, Aravind & Shah, Kalpit, 2019. "Progress on the pre-treatment of lignocellulosic biomass employing ionic liquids," Renewable and Sustainable Energy Reviews, Elsevier, vol. 105(C), pages 268-292.
- Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
- Koronaki, I.P. & Prentza, L. & Papaefthimiou, V., 2015. "Modeling of CO2 capture via chemical absorption processes − An extensive literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 547-566.
- Zhang, Yingying & Ji, Xiaoyan & Lu, Xiaohua, 2018. "Choline-based deep eutectic solvents for CO2 separation: Review and thermodynamic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 97(C), pages 436-455.
- Minea, Alina Adriana & Murshed, S. M. Sohel, 2018. "A review on development of ionic liquid based nanofluids and their heat transfer behavior," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 584-599.
- Guldhe, Abhishek & Singh, Bhaskar & Mutanda, Taurai & Permaul, Kugen & Bux, Faizal, 2015. "Advances in synthesis of biodiesel via enzyme catalysis: Novel and sustainable approaches," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 1447-1464.
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Syed Awais Ali & Waqad Ul Mulk & Zahoor Ullah & Haris Khan & Afrah Zahid & Mansoor Ul Hassan Shah & Syed Nasir Shah, 2022. "Recent Advances in the Synthesis, Application and Economic Feasibility of Ionic Liquids and Deep Eutectic Solvents for CO 2 Capture: A Review," Energies, MDPI, vol. 15(23), pages 1-31, November.
- Kazmi, Bilal & Haider, Junaid & Ammar Taqvi, Syed Ali & Qyyum, Muhammad Abdul & Ali, Syed Imran & Hussain Awan, Zahoor Ul & Lim, Hankwon & Naqvi, Muhammad & Naqvi, Salman Raza, 2022. "Thermodynamic and economic assessment of cyano functionalized anion based ionic liquid for CO2 removal from natural gas integrated with, single mixed refrigerant liquefaction process for clean energy," Energy, Elsevier, vol. 239(PE).
- Saad Saeed & Mahmood Saleem & Abdullah Durrani & Junaid Haider & Muzaffar Riaz & Sana Saeed & Muhammad Abdul Qyyum & Abdul-Sattar Nizami & Mohammad Rehan & Moonyong Lee, 2021. "Determination of Kinetic and Thermodynamic Parameters of Pyrolysis of Coal and Sugarcane Bagasse Blends Pretreated by Ionic Liquid: A Step towards Optimization of Energy Systems," Energies, MDPI, vol. 14(9), pages 1-13, April.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- N.Borhani, Tohid & Wang, Meihong, 2019. "Role of solvents in CO2 capture processes: The review of selection and design methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
- Vega, F. & Baena-Moreno, F.M. & Gallego Fernández, Luz M. & Portillo, E. & Navarrete, B. & Zhang, Zhien, 2020. "Current status of CO2 chemical absorption research applied to CCS: Towards full deployment at industrial scale," Applied Energy, Elsevier, vol. 260(C).
- Zhang, Shihan & Shen, Yao & Wang, Lidong & Chen, Jianmeng & Lu, Yongqi, 2019. "Phase change solvents for post-combustion CO2 capture: Principle, advances, and challenges," Applied Energy, Elsevier, vol. 239(C), pages 876-897.
- Aghaie, Mahsa & Rezaei, Nima & Zendehboudi, Sohrab, 2018. "A systematic review on CO2 capture with ionic liquids: Current status and future prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 96(C), pages 502-525.
- Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
- Sun, Jiasi & Sato, Yuki & Sakai, Yuka & Kansha, Yasuki, 2023. "Ternary deep eutectic solvents: Evaluations based on how their physical properties affect energy consumption during post-combustion CO2 capture," Energy, Elsevier, vol. 270(C).
- Chen, Yifeng & Sun, Yunhao & Yang, Zhuhong & Lu, Xiaohua & Ji, Xiaoyan, 2020. "CO2 separation using a hybrid choline-2-pyrrolidine-carboxylic acid/polyethylene glycol/water absorbent," Applied Energy, Elsevier, vol. 257(C).
- Jin, S.W. & Li, Y.P. & Nie, S. & Sun, J., 2017. "The potential role of carbon capture and storage technology in sustainable electric-power systems under multiple uncertainties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 467-480.
- Feng, Chao & Zhu, Rong & Wei, Guangsheng & Dong, Kai & Xia, Tao, 2023. "Typical case of CO2 capture in Chinese iron and steel enterprises: Exergy analysis," Applied Energy, Elsevier, vol. 336(C).
- Huang, Haiping & Zhang, Hong & Han, Denglin, 2021. "Ferrocene addition for suppression of hydrogen sulfide formation during thermal recovery of oil sand bitumen," Energy, Elsevier, vol. 230(C).
- Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
- Cormos, Calin-Cristian, 2023. "Green hydrogen production from decarbonized biomass gasification: An integrated techno-economic and environmental analysis," Energy, Elsevier, vol. 270(C).
- Bihong, Lv & Kexuan, Yang & Xiaobin, Zhou & Zuoming, Zhou & Guohua, Jing, 2020. "2-Amino-2-methyl-1-propanol based non-aqueous absorbent for energy-efficient and non-corrosive carbon dioxide capture," Applied Energy, Elsevier, vol. 264(C).
- Majeda Khraisheh & Khadija M. Zadeh & Abedalkhader I. Alkhouzaam & Dorra Turki & Mohammad K. Hassan & Fares Al Momani & Syed M. J. Zaidi, 2020. "Characterization of polysulfone/diisopropylamine 1‐alkyl‐3‐methylimidazolium ionic liquid membranes: high pressure gas separation applications," Greenhouse Gases: Science and Technology, Blackwell Publishing, vol. 10(4), pages 795-808, August.
- José Luis Míguez & Jacobo Porteiro & Raquel Pérez-Orozco & Miguel Ángel Gómez, 2018. "Technology Evolution in Membrane-Based CCS," Energies, MDPI, vol. 11(11), pages 1-18, November.
- Keon Hee Kim & Eun Yeol Lee, 2017. "Environmentally-Benign Dimethyl Carbonate-Mediated Production of Chemicals and Biofuels from Renewable Bio-Oil," Energies, MDPI, vol. 10(11), pages 1-15, November.
- Guo, Hui & Li, Chenxu & Shi, Xiaoqin & Li, Hui & Shen, Shufeng, 2019. "Nonaqueous amine-based absorbents for energy efficient CO2 capture," Applied Energy, Elsevier, vol. 239(C), pages 725-734.
- Mosayebi, Mehdi & Salehi, Zeinab & Doosthosseini, Hamid & Tishbi, Pedram & Kawase, Yoshinori, 2020. "Amine, thiol, and octyl functionalization of GO-Fe3O4 nanocomposites to enhance immobilization of lipase for transesterification," Renewable Energy, Elsevier, vol. 154(C), pages 569-580.
- Oner, Oytun & Khalilpour, Kaveh, 2022. "Evaluation of green hydrogen carriers: A multi-criteria decision analysis tool," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Fu, Kun & Liu, Chenxu & Wang, Lemeng & Huang, Xiayu & Fu, Dong, 2021. "Performance and mechanism of CO2 absorption in 2-ethylhexan-1-amine + glyme non-aqueous solutions," Energy, Elsevier, vol. 220(C).
More about this item
Keywords
Acid gas removal; Ionic liquids; Imidazolium; Solubility data; Process system engineering;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:123:y:2020:i:c:s1364032120300678. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.