IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v16y2023i6p2824-d1100924.html
   My bibliography  Save this article

Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy

Author

Listed:
  • Saadat Ullah Khan Suri

    (Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore 54000, Pakistan
    Department of Chemical Engineering, Balochistan University of Information Technology and Management Sciences (BUITEMS), Quetta 87300, Pakistan)

  • Muhammad Khaliq Majeed

    (Department of Chemical Engineering, COMSATS University Islamabad (CUI), Lahore Campus, Defense Road, Off Raiwind Road, Lahore 54000, Pakistan)

  • Muhammad Shakeel Ahmad

    (Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R&D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia)

Abstract

Recently, the depletion of fossil fuel reserves and the harmful environmental effects caused by burning fossil fuels have signified the supreme importance of utilizing sustainable energy reserves such as geothermal and solar energies. The advancement of the Organic Rankine Cycle as a clean energy generation path by researchers has gained momentous demand for its commercialization. The sole Organic Rankine Cycle can produce a large amount of energy in contrast to other power production cycles. To make this clean energy recovery sustainable, liquefied natural gas cold energy can be utilized through regasification to integrate the Organic Rankine Cycle with the anti-sublimation carbon dioxide capture process, merging the biogas setup. Liquefied natural gas cold energy recovery has paramount importance with aspects of energy economy and environment preservation. Liquefied natural gas regasification in shell and tube heat exchangers poses a minimal freezing risk and is high duty. Anti-sublimation of biogas is an energy-intensive process. It can be materialized from liquefied natural gas cold energy implementation through the Organic Rankine Cycle by maintaining cryogenic temperatures there. In this situation, greenhouse gas emissions can be minimized. The simulation analysis is performed based on thermodynamic and techno-economic assessments of the poly-generation energy systems. It is proved to be useful in conducting by regulating different working fluids. The optimum electric power generated is 2492 MW. While the optimum net present value, energy efficiency, and exergy efficiency of this proposed energy system are 19.5, 57.13%, and 76.20%, respectively. The governmental authorities and environmental protection can benefit from this scientific research work to create an environmentally friendly atmosphere and energy for contemporary society.

Suggested Citation

  • Saadat Ullah Khan Suri & Muhammad Khaliq Majeed & Muhammad Shakeel Ahmad, 2023. "Simulation Analysis of Novel Integrated LNG Regasification-Organic Rankine Cycle and Anti-Sublimation Process to Generate Clean Energy," Energies, MDPI, vol. 16(6), pages 1-20, March.
  • Handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2824-:d:1100924
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/16/6/2824/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/16/6/2824/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Pospíšil, Jiří & Charvát, Pavel & Arsenyeva, Olga & Klimeš, Lubomír & Špiláček, Michal & Klemeš, Jiří Jaromír, 2019. "Energy demand of liquefaction and regasification of natural gas and the potential of LNG for operative thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 99(C), pages 1-15.
    2. Marek Marks & Hanna Klikocka, 2020. "Assumptions and Implementation of Climate and Energy Policy under the Europe 2020 Strategy," European Research Studies Journal, European Research Studies Journal, vol. 0(Special 1), pages 1041-1059.
    3. He, Tianbiao & Chong, Zheng Rong & Zheng, Junjie & Ju, Yonglin & Linga, Praveen, 2019. "LNG cold energy utilization: Prospects and challenges," Energy, Elsevier, vol. 170(C), pages 557-568.
    4. Huerta, Felipe & Vesovic, Velisa, 2019. "A realistic vapour phase heat transfer model for the weathering of LNG stored in large tanks," Energy, Elsevier, vol. 174(C), pages 280-291.
    5. Park, Jinwoo & You, Fengqi & Cho, Hyungtae & Lee, Inkyu & Moon, Il, 2020. "Novel massive thermal energy storage system for liquefied natural gas cold energy recovery," Energy, Elsevier, vol. 195(C).
    6. Zhang, Han & Han, Zhonghe & Wu, Di & Li, Peng & Li, Peng, 2023. "Energy optimization and performance analysis of a novel integrated energy system coupled with solar thermal unit and preheated organic cycle under extended following electric load strategy," Energy, Elsevier, vol. 272(C).
    7. Song, Chunfeng & Liu, Qingling & Deng, Shuai & Li, Hailong & Kitamura, Yutaka, 2019. "Cryogenic-based CO2 capture technologies: State-of-the-art developments and current challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 101(C), pages 265-278.
    8. Kjersti Aalbu & Tore Longva, 2022. "From Progress to Delay: The Quest for Data in the Negotiations on Greenhouse Gases in the International Maritime Organization," Global Environmental Politics, MIT Press, vol. 22(2), pages 136-155, Spring.
    9. Natalia Romasheva & Alina Ilinova, 2019. "CCS Projects: How Regulatory Framework Influences Their Deployment," Resources, MDPI, vol. 8(4), pages 1-19, December.
    10. Mutezo, G. & Mulopo, J., 2021. "A review of Africa's transition from fossil fuels to renewable energy using circular economy principles," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    11. Wang, Lingbao & Bu, Xianbiao & Li, Huashan, 2020. "Multi-objective optimization and off-design evaluation of organic rankine cycle (ORC) for low-grade waste heat recovery," Energy, Elsevier, vol. 203(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Enayatizadeh, Hossein & Arjomand, Alireza & Tynjälä, Tero & Inkeri, Eero, 2024. "Cryogenic carbon capture design through CO2 anti-sublimation for a gas turbine exhaust: Environmental, economic, energy, and exergy analysis," Energy, Elsevier, vol. 304(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Park, Jinwoo & Cho, Seungsik & Qi, Meng & Noh, Wonjun & Lee, Inkyu & Moon, Il, 2021. "Liquid air energy storage coupled with liquefied natural gas cold energy: Focus on efficiency, energy capacity, and flexibility," Energy, Elsevier, vol. 216(C).
    2. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    3. Qi, Meng & Park, Jinwoo & Kim, Jeongdong & Lee, Inkyu & Moon, Il, 2020. "Advanced integration of LNG regasification power plant with liquid air energy storage: Enhancements in flexibility, safety, and power generation," Applied Energy, Elsevier, vol. 269(C).
    4. Seungyeop Baek & Wontak Choi & Gyuchang Kim & Jaedeok Seo & Sanggon Lee & Hyomin Jeong & Yonmo Sung, 2022. "Liquefied Natural Gas Cold Energy Utilization for Land-Based Cold Water Fish Aquaculture in South Korea," Energies, MDPI, vol. 15(19), pages 1-13, October.
    5. Manuel Naveiro & Manuel Romero Gómez & Ignacio Arias-Fernández & Álvaro Baaliña Insua, 2022. "Thermodynamic and Economic Analyses of Zero-Emission Open Loop Offshore Regasification Systems Integrating ORC with Zeotropic Mixtures and LNG Open Power Cycle," Energies, MDPI, vol. 15(22), pages 1-24, November.
    6. Huang, Z.F. & Soh, K.Y. & Wan, Y.D. & Islam, M.R. & Chua, K.J., 2022. "Assessment of an intermediate working medium and cold energy storage (IWM-CES) system for LNG cold energy utilization under real regasification case," Energy, Elsevier, vol. 253(C).
    7. Zhang, Chengbin & Li, Deming & Mao, Changjun & Liu, Haiyang & Chen, Yongping, 2024. "Thermodynamic analysis of liquid air energy storage system integrating LNG cold energy," Energy, Elsevier, vol. 299(C).
    8. Tian, Zhen & Qi, Zhixin & Gan, Wanlong & Tian, Molin & Gao, Wenzhong, 2022. "A novel negative carbon-emission, cooling, and power generation system based on combined LNG regasification and waste heat recovery: Energy, exergy, economic, environmental (4E) evaluations," Energy, Elsevier, vol. 257(C).
    9. Y., Nandakishora & Sahoo, Ranjit K. & S., Murugan & Gu, Sai, 2023. "4E analysis of the cryogenic CO2 separation process integrated with waste heat recovery," Energy, Elsevier, vol. 278(PA).
    10. Perez, Fernando & Al Ghafri, Saif Z.S. & Gallagher, Liam & Siahvashi, Arman & Ryu, Yonghee & Kim, Sungwoo & Kim, Sung Gyu & Johns, Michael L. & May, Eric F., 2021. "Measurements of boil-off gas and stratification in cryogenic liquid nitrogen with implications for the storage and transport of liquefied natural gas," Energy, Elsevier, vol. 222(C).
    11. Ebrahimi, Armin & Ghorbani, Bahram & Ziabasharhagh, Masoud, 2020. "Introducing a novel integrated cogeneration system of power and cooling using stored liquefied natural gas as a cryogenic energy storage system," Energy, Elsevier, vol. 206(C).
    12. Devine, Mel T. & Russo, Marianna, 2019. "Liquefied natural gas and gas storage valuation: Lessons from the integrated Irish and UK markets," Applied Energy, Elsevier, vol. 238(C), pages 1389-1406.
    13. Heo, SungKu & Byun, Jaewon & Ifaei, Pouya & Ko, Jaerak & Ha, Byeongmin & Hwangbo, Soonho & Yoo, ChangKyoo, 2024. "Towards mega-scale decarbonized industrial park (Mega-DIP): Generative AI-driven techno-economic and environmental assessment of renewable and sustainable energy utilization in petrochemical industry," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    14. Gennadiy Stroykov & Alexey Y. Cherepovitsyn & Elizaveta A. Iamshchikova, 2020. "Powering Multiple Gas Condensate Wells in Russia’s Arctic: Power Supply Systems Based on Renewable Energy Sources," Resources, MDPI, vol. 9(11), pages 1-15, November.
    15. Guelpa, Elisa & Bischi, Aldo & Verda, Vittorio & Chertkov, Michael & Lund, Henrik, 2019. "Towards future infrastructures for sustainable multi-energy systems: A review," Energy, Elsevier, vol. 184(C), pages 2-21.
    16. Song, Xueyi & Yuan, Junjie & Yang, Chen & Deng, Gaofeng & Wang, Zhichao & Gao, Jubao, 2023. "Carbon dioxide separation performance evaluation of amine-based versus choline-based deep eutectic solvents," Renewable and Sustainable Energy Reviews, Elsevier, vol. 184(C).
    17. Huang, Z.F. & Wan, Y.D. & Soh, K.Y. & Islam, M.R. & Chua, K.J., 2022. "Off-design and flexibility analyses of combined cooling and power based liquified natural gas (LNG) cold energy utilization system under fluctuating regasification rates," Applied Energy, Elsevier, vol. 310(C).
    18. Zhu, Yu & Li, Jiamei & Ge, Minghui & Gu, Hai & Wang, Shixue, 2023. "Numerical and experimental study of a non-frosting thermoelectric generation device for low temperature waste heat recovery," Applied Energy, Elsevier, vol. 352(C).
    19. Li, Tailu & Qiao, Yuwen & Wang, Zeyu & Zhang, Yao & Gao, Xiang & Yuan, Ye, 2024. "Experimental study on dynamic power generation of three ORC-based cycle configurations under different heat source/sink conditions," Renewable Energy, Elsevier, vol. 227(C).
    20. Khan, Muhammad Usman & Lee, Jonathan Tian En & Bashir, Muhammad Aamir & Dissanayake, Pavani Dulanja & Ok, Yong Sik & Tong, Yen Wah & Shariati, Mohammad Ali & Wu, Sarah & Ahring, Birgitte Kiaer, 2021. "Current status of biogas upgrading for direct biomethane use: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:16:y:2023:i:6:p:2824-:d:1100924. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.