IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v91y2018icp394-408.html
   My bibliography  Save this article

Overview of the oxygenated fuels in spark ignition engine: Environmental and performance

Author

Listed:
  • Awad, Omar I.
  • Mamat, R.
  • Ibrahim, Thamir K.
  • Hammid, Ali Thaeer
  • Yusri, I.M.
  • Hamidi, Mohd Adnin
  • Humada, Ali M.
  • Yusop, A.F.

Abstract

Oxygenated fuels such as alcohols and ethers have the potential to provide reliable sources, and environmentally friendly fuel to world's increasing future energy demands. Oxygenated fuels have a promised future since are renewable and produced from several sources, also can be produced locally. The first objective of this paper is to systematically review of oxygenated fuels including alcohol and ether regarding the production, environmental impacts and potential using as octane booster of gasoline that used in spark ignition SI) engine. Another objective of this paper is to review the effects of oxygenated fuels on performances and emissions characteristics of spark ignition engine. Alcohol and ether burn very cleanly than regular gasoline and produce lesser carbon monoxide (CO) and nitrogen oxides (NOx). Mainly the ether fuels (methyl tertiary butyl ether MTBE and Dimethyl Ether DME) are used as additives at low blending ratio to enhance the octane number and oxygen content of gasoline. Furthermore, alcohols and ethers have significant impacts on the environment, greenhouse gas and human health. In addition to this, application of oxygenated fuel on SI engines can decrease environmental pollution, strengthen agricultural economy and decrease gasoline fuel requirements. The increase in engine performance could be attained with an increased compression ratio along with the use of alcohol fuels which have a higher-octane value. Overall, oxygenated fuels have been found to be a very promising alternative fuel for SI engines, capable of providing high thermal efficiency, and lower NOx levels.

Suggested Citation

  • Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
  • Handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:394-408
    DOI: 10.1016/j.rser.2018.03.107
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032118302065
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2018.03.107?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
    2. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    3. Alenezi, R. & Santos, R.C.D. & Raymahasay, S. & Leeke, G.A., 2013. "Improved biodiesel manufacture at low temperature and short reaction time," Renewable Energy, Elsevier, vol. 53(C), pages 242-248.
    4. Thomas, Valerie & Kwong, Andrew, 2001. "Ethanol as a lead replacement: phasing out leaded gasoline in Africa," Energy Policy, Elsevier, vol. 29(13), pages 1133-1143, November.
    5. Turner, J.W.G. & Pearson, R.J. & Dekker, E. & Iosefa, B. & Johansson, K. & ac Bergström, K., 2013. "Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol," Applied Energy, Elsevier, vol. 102(C), pages 72-86.
    6. Ozsezen, Ahmet Necati & Canakci, Mustafa, 2011. "Performance and combustion characteristics of alcohol–gasoline blends at wide-open throttle," Energy, Elsevier, vol. 36(5), pages 2747-2752.
    7. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    8. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    9. Rask, Kevin N., 1998. "Clean air and renewable fuels: the market for fuel ethanol in the US from 1984 to 1993," Energy Economics, Elsevier, vol. 20(3), pages 325-345, June.
    10. Rajasekar, E. & Murugesan, A. & Subramanian, R. & Nedunchezhian, N., 2010. "Review of NOx reduction technologies in CI engines fuelled with oxygenated biomass fuels," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 2113-2121, September.
    11. Balat, Mustafa & Balat, Havva, 2009. "Recent trends in global production and utilization of bio-ethanol fuel," Applied Energy, Elsevier, vol. 86(11), pages 2273-2282, November.
    12. Ghadikolaei, Meisam Ahmadi, 2016. "Effect of alcohol blend and fumigation on regulated and unregulated emissions of IC engines—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 1440-1495.
    13. Shafiee, Shahriar & Topal, Erkan, 2009. "When will fossil fuel reserves be diminished?," Energy Policy, Elsevier, vol. 37(1), pages 181-189, January.
    14. Balki, Mustafa Kemal & Sayin, Cenk, 2014. "The effect of compression ratio on the performance, emissions and combustion of an SI (spark ignition) engine fueled with pure ethanol, methanol and unleaded gasoline," Energy, Elsevier, vol. 71(C), pages 194-201.
    15. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    16. Megaritis, A. & Yap, D. & Wyszynski, M.L., 2007. "Effect of water blending on bioethanol HCCI combustion with forced induction and residual gas trapping," Energy, Elsevier, vol. 32(12), pages 2396-2400.
    17. Mohanty, Sujit Kumar & Behera, Shuvasis & Swain, Manas Ranjan & Ray, Ramesh Chandra, 2009. "Bioethanol production from mahula (Madhuca latifolia L.) flowers by solid-state fermentation," Applied Energy, Elsevier, vol. 86(5), pages 640-644, May.
    18. Lanzanova, Thompson Diórdinis Metzka & Dalla Nora, Macklini & Zhao, Hua, 2016. "Performance and economic analysis of a direct injection spark ignition engine fueled with wet ethanol," Applied Energy, Elsevier, vol. 169(C), pages 230-239.
    19. Awad, Omar I. & Mamat, Rizalman & Ibrahim, Thamir K. & Kettner, Maurice & Kadirgama, K. & Leman, A.M. & Saiful, A.I.M., 2018. "Effects of fusel oil water content reduction on fuel properties, performance and emissions of SI engine fueled with gasoline -fusel oil blends," Renewable Energy, Elsevier, vol. 118(C), pages 858-869.
    20. Abbasi, Tasneem & Abbasi, S.A., 2010. "Biomass energy and the environmental impacts associated with its production and utilization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 919-937, April.
    21. Rowe, Rebecca L. & Street, Nathaniel R. & Taylor, Gail, 2009. "Identifying potential environmental impacts of large-scale deployment of dedicated bioenergy crops in the UK," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(1), pages 271-290, January.
    22. Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
    23. Canakci, Mustafa & Ozsezen, Ahmet Necati & Alptekin, Ertan & Eyidogan, Muharrem, 2013. "Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine," Renewable Energy, Elsevier, vol. 52(C), pages 111-117.
    24. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    25. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    26. Awad, Omar I. & Ali, Obed M. & Hammid, Ali Thaeer & Mamat, Rizalman, 2018. "Impact of fusel oil moisture reduction on the fuel properties and combustion characteristics of SI engine fueled with gasoline-fusel oil blends," Renewable Energy, Elsevier, vol. 123(C), pages 79-91.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. da Costa, Roberto Berlini Rodrigues & Valle, Ramón Molina & Hernández, Juan J. & Malaquias, Augusto César Teixeira & Coronado, Christian J.R. & Pujatti, Fabrício José Pacheco, 2020. "Experimental investigation on the potential of biogas/ethanol dual-fuel spark-ignition engine for power generation: Combustion, performance and pollutant emission analysis," Applied Energy, Elsevier, vol. 261(C).
    2. Liu, Zengbin & Zhen, Xudong & Geng, Jie & Tian, Zhi, 2024. "Effects of injection timing on mixture formation, combustion, and emission characteristics in a n-butanol direct injection spark ignition engine," Energy, Elsevier, vol. 295(C).
    3. Francesco Catapano & Silvana Di Iorio & Agnese Magno & Paolo Sementa & Bianca Maria Vaglieco, 2022. "Measurement of Sub-23 nm Particles Emitted from PFI/DI SI Engine Fueled with Oxygenated Fuels: A Comparison between Conventional and Novel Methodologies," Energies, MDPI, vol. 15(6), pages 1-14, March.
    4. Pirouzfar, Vahid & Hakami, Mahban & Hassanpour zonoozi, Mahrokh & Su, Chia-Hung, 2024. "Improving the performance of gasoline fuels by adding methanol and methyl tertiary-butyl ether along with metal oxides titanium oxide and magnesium oxide," Energy, Elsevier, vol. 294(C).
    5. Paolo Iodice & Massimo Cardone, 2021. "Ethanol/Gasoline Blends as Alternative Fuel in Last Generation Spark-Ignition Engines: A Review on CO and HC Engine Out Emissions," Energies, MDPI, vol. 14(13), pages 1-18, July.
    6. Catapano, Francesco & Di Iorio, Silvana & Magno, Agnese & Vaglieco, Bianca Maria, 2022. "Effect of fuel quality on combustion evolution and particle emissions from PFI and GDI engines fueled with gasoline, ethanol and blend, with focus on 10–23 nm particles," Energy, Elsevier, vol. 239(PB).
    7. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    8. Li, Jing & Ye, Lan & Gong, Shiqi & Deng, Xiaorong & Wang, Shuo & Liu, Rui & Yang, Wenming, 2024. "Review on the combustion progress and engine application of tailor-made fuels from biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    9. Galusnyak, Stefan Cristian & Petrescu, Letitia & Cormos, Calin-Cristian, 2022. "Classical vs. reactive distillation technologies for biodiesel production: An environmental comparison using LCA methodology," Renewable Energy, Elsevier, vol. 192(C), pages 289-299.
    10. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    11. Amaral, Lucimar Venâncio & Santos, Nathália Duarte Souza Alvarenga & Roso, Vinícius Rückert & Sebastião, Rita de Cássia de Oliveira & Pujatti, Fabrício José Pacheco, 2021. "Effects of gasoline composition on engine performance, exhaust gases and operational costs," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    2. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    3. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    4. Thakur, Amit Kumar & Kaviti, Ajay Kumar & Mehra, Roopesh & Mer, K.K.S., 2017. "Progress in performance analysis of ethanol-gasoline blends on SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 324-340.
    5. Süleyman Şimşek & Hasan Saygın & Bülent Özdalyan, 2020. "Improvement of Fusel Oil Features and Effect of Its Use in Different Compression Ratios for an SI Engine on Performance and Emission," Energies, MDPI, vol. 13(7), pages 1-14, April.
    6. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    7. Muhamad Norkhizan Abdullah & Ahmad Fitri Yusop & Rizalman Mamat & Mohd Adnin Hamidi & Kumarasamy Sudhakar & Talal Yusaf, 2023. "Sustainable Biofuels from First Three Alcohol Families: A Critical Review," Energies, MDPI, vol. 16(2), pages 1-21, January.
    8. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    9. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    10. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.
    11. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    12. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    13. Yuce, Bahadir Erman & Oral, Faruk, 2024. "Multi objective optimization of emission and performance characteristics in a spark ignition engine with a novel hydrogen generator," Energy, Elsevier, vol. 289(C).
    14. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    15. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    16. Chao Jin & Xiaodan Li & Teng Xu & Juntong Dong & Zhenlong Geng & Jia Liu & Chenyun Ding & Jingjing Hu & Ahmed El ALAOUI & Qing Zhao & Haifeng Liu, 2023. "Zero-Carbon and Carbon-Neutral Fuels: A Review of Combustion Products and Cytotoxicity," Energies, MDPI, vol. 16(18), pages 1-29, September.
    17. Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
    18. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    19. Li, Yuqiang & Meng, Lei & Nithyanandan, Karthik & Lee, Timothy H. & Lin, Yilu & Lee, Chia-fon F. & Liao, Shengming, 2017. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends," Energy, Elsevier, vol. 121(C), pages 43-54.
    20. Awad, Omar I. & Mamat, Rizalman & Ibrahim, Thamir K. & Kettner, Maurice & Kadirgama, K. & Leman, A.M. & Saiful, A.I.M., 2018. "Effects of fusel oil water content reduction on fuel properties, performance and emissions of SI engine fueled with gasoline -fusel oil blends," Renewable Energy, Elsevier, vol. 118(C), pages 858-869.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:91:y:2018:i:c:p:394-408. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.