IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v157y2015icp134-143.html
   My bibliography  Save this article

Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios

Author

Listed:
  • Wang, Xin
  • Ge, Yunshan
  • Liu, Linlin
  • Peng, Zihang
  • Hao, Lijun
  • Yin, Hang
  • Ding, Yan
  • Wang, Junfang

Abstract

Methanol exhibits better capability of lowering engine emissions and fuel cost, but a potential rise in pipe-out NOx and carbonyl emissions has increased health-related risks and stalled its application. This paper examined regulated, unregulated and particulate emissions from a 1.8L GDI-powered passenger car running the New European Driving Cycle (NEDC). Conventional gasoline, together with three gasohol samples with 15%, 25% and 40% methanol substitution (M15, M25 and M40), was used. To evaluate health risk linked with pipe-out formaldehyde and benzene, a human exposure model was established. The results showed that compared with gasoline, burning gasohol significantly reduced pipe-out CO and HC emissions. Evident decrease in NOx emission was noticed with M15 and M25 fueling, but in the case of M40, NOx emissions were similar with gasoline. Carbonyls, about 50% of which were found formaldehyde, surged sharply with increased methanol percentage in the blend, while VOCs showed an opposite propensity. Health risk assessment showed that, even under a severe exposure condition, the levels of exhaust-borne formaldehyde and benzene were not sufficient to cause acute or chronic symptoms. Cancer-related risks induced by gasoline and gasohol engine exhaust were found in the same magnitude. Burning gasohol enabled an over 30% PM removal but resulted in an increase in particulate number due to an increased number of nuclei-mode particles. At last, burning gasohol produced about 0.8–4.1% less pipe-out CO2 emission than gasoline, while saving fuel cost by 5.7–15%.

Suggested Citation

  • Wang, Xin & Ge, Yunshan & Liu, Linlin & Peng, Zihang & Hao, Lijun & Yin, Hang & Ding, Yan & Wang, Junfang, 2015. "Evaluation on toxic reduction and fuel economy of a gasoline direct injection- (GDI-) powered passenger car fueled with methanol–gasoline blends with various substitution ratios," Applied Energy, Elsevier, vol. 157(C), pages 134-143.
  • Handle: RePEc:eee:appene:v:157:y:2015:i:c:p:134-143
    DOI: 10.1016/j.apenergy.2015.08.023
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261915009496
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2015.08.023?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Liang, Chen & Ji, Changwei & Gao, Binbin, 2013. "Load characteristics of a spark-ignited ethanol engine with DME enrichment," Applied Energy, Elsevier, vol. 112(C), pages 500-506.
    2. Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
    3. Vancoillie, J. & Demuynck, J. & Sileghem, L. & Van De Ginste, M. & Verhelst, S. & Brabant, L. & Van Hoorebeke, L., 2013. "The potential of methanol as a fuel for flex-fuel and dedicated spark-ignition engines," Applied Energy, Elsevier, vol. 102(C), pages 140-149.
    4. Vancoillie, J. & Sileghem, L. & Verhelst, S., 2014. "Development and validation of a quasi-dimensional model for methanol and ethanol fueled SI engines," Applied Energy, Elsevier, vol. 132(C), pages 412-425.
    5. Mat Yasin, M.H. & Yusaf, Talal & Mamat, R. & Fitri Yusop, A., 2014. "Characterization of a diesel engine operating with a small proportion of methanol as a fuel additive in biodiesel blend," Applied Energy, Elsevier, vol. 114(C), pages 865-873.
    6. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    7. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    8. Turner, J.W.G. & Pearson, R.J. & Dekker, E. & Iosefa, B. & Johansson, K. & ac Bergström, K., 2013. "Extending the role of alcohols as transport fuels using iso-stoichiometric ternary blends of gasoline, ethanol and methanol," Applied Energy, Elsevier, vol. 102(C), pages 72-86.
    9. Liang, Chen & Ji, Changwei & Liu, Xiaolong, 2011. "Combustion and emissions performance of a DME-enriched spark-ignited methanol engine at idle condition," Applied Energy, Elsevier, vol. 88(11), pages 3704-3711.
    10. Gong, Chang-Ming & Huang, Kuo & Jia, Jing-Long & Su, Yan & Gao, Qing & Liu, Xun-Jun, 2011. "Regulated emissions from a direct-injection spark-ignition methanol engine," Energy, Elsevier, vol. 36(5), pages 3379-3387.
    11. Wang, Chongming & Xu, Hongming & Herreros, Jose Martin & Wang, Jianxin & Cracknell, Roger, 2014. "Impact of fuel and injection system on particle emissions from a GDI engine," Applied Energy, Elsevier, vol. 132(C), pages 178-191.
    12. Gong, Changming & Huang, Kuo & Deng, Baoqing & Liu, Xunjun, 2011. "Catalyst light-off behavior of a spark-ignition LPG (liquefied petroleum gas) engine during cold start," Energy, Elsevier, vol. 36(1), pages 53-59.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Li, Chengjiang & Negnevitsky, Michael & Wang, Xiaolin, 2020. "Prospective assessment of methanol vehicles in China using FANP-SWOT analysis," Transport Policy, Elsevier, vol. 96(C), pages 60-75.
    2. Al-Qahtani, Amjad & González-Garay, Andrés & Bernardi, Andrea & Galán-Martín, Ángel & Pozo, Carlos & Dowell, Niall Mac & Chachuat, Benoit & Guillén-Gosálbez, Gonzalo, 2020. "Electricity grid decarbonisation or green methanol fuel? A life-cycle modelling and analysis of today′s transportation-power nexus," Applied Energy, Elsevier, vol. 265(C).
    3. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    4. Chengjiang Li & Tingwen Jia & Shiyuan Wang & Xiaolin Wang & Michael Negnevitsky & Honglei Wang & Yujie Hu & Weibin Xu & Na Zhou & Gang Zhao, 2023. "Methanol Vehicles in China: A Review from a Policy Perspective," Sustainability, MDPI, vol. 15(12), pages 1-22, June.
    5. AlSayed, Ahmed & Fergala, Ahmed & Khattab, Saif & ElSharkawy, Adham & Eldyasti, Ahmed, 2018. "Optimization of methane bio-hydroxylation using waste activated sludge mixed culture of type I methanotrophs as biocatalyst," Applied Energy, Elsevier, vol. 211(C), pages 755-763.
    6. Sathish Kumar, T. & Ashok, B., 2024. "Development of combustion control map for flex fuel operation in methanol powered direct injection SI engine," Energy, Elsevier, vol. 288(C).
    7. Miganakallu, Niranjan & Yang, Zhuyong & Rogóż, Rafał & Kapusta, Łukasz Jan & Christensen, Cord & Barros, Sam & Naber, Jeffrey, 2020. "Effect of water - methanol blends on engine performance at borderline knock conditions in gasoline direct injection engines," Applied Energy, Elsevier, vol. 264(C).
    8. Gong, Changming & Peng, Legao & Liu, Fenghua, 2017. "Modeling of the overall equivalence ratio effects on combustion process and unregulated emissions of an SIDI methanol engine," Energy, Elsevier, vol. 125(C), pages 118-126.
    9. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    10. Oleg Bazaluk & Valerii Havrysh & Vitalii Nitsenko & Tomas Baležentis & Dalia Streimikiene & Elena A. Tarkhanova, 2020. "Assessment of Green Methanol Production Potential and Related Economic and Environmental Benefits: The Case of China," Energies, MDPI, vol. 13(12), pages 1-25, June.
    11. Mohsin Raza & Longfei Chen & Felix Leach & Shiting Ding, 2018. "A Review of Particulate Number (PN) Emissions from Gasoline Direct Injection (GDI) Engines and Their Control Techniques," Energies, MDPI, vol. 11(6), pages 1-26, June.
    12. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    13. Patel, Sanjay K.S. & Selvaraj, Chandrabose & Mardina, Primata & Jeong, Jae-Hoon & Kalia, Vipin C. & Kang, Yun Chan & Lee, Jung-Kul, 2016. "Enhancement of methanol production from synthetic gas mixture by Methylosinus sporium through covalent immobilization," Applied Energy, Elsevier, vol. 171(C), pages 383-391.
    14. Changchun Xu & Haengmuk Cho, 2021. "Effect of Methanol/Water Mixed Fuel Compound Injection on Engine Combustion and Emissions," Energies, MDPI, vol. 14(15), pages 1-14, July.
    15. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    16. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Wang, Xin & Ge, Yunshan & Zhang, Chuanzhen & Tan, Jianwei & Hao, Lijun & Liu, Jia & Gong, Huiming, 2016. "Effects of engine misfire on regulated, unregulated emissions from a methanol-fueled vehicle and its ozone forming potential," Applied Energy, Elsevier, vol. 177(C), pages 187-195.
    2. Zhen, Xudong & Wang, Yang, 2015. "An overview of methanol as an internal combustion engine fuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 477-493.
    3. Wang, Shuofeng & Ji, Changwei & Zhang, Bo & Liu, Xiaolong, 2014. "Lean burn performance of a hydrogen-blended gasoline engine at the wide open throttle condition," Applied Energy, Elsevier, vol. 136(C), pages 43-50.
    4. Sheng Su & Yunshan Ge & Xin Wang & Mengzhu Zhang & Lijun Hao & Jianwei Tan & Fulu Shi & Dongdong Guo & Zhengjun Yang, 2020. "Evaluating the In-Service Emissions of High-Mileage Dedicated Methanol-Fueled Passenger Cars: Regulated and Unregulated Emissions," Energies, MDPI, vol. 13(11), pages 1-15, May.
    5. Cho, Jaeho & Si, Woosung & Jang, Wonwook & Jin, Dongyoung & Myung, Cha-Lee & Park, Simsoo, 2015. "Impact of intermediate ethanol blends on particulate matter emission from a spark ignition direct injection (SIDI) engine," Applied Energy, Elsevier, vol. 160(C), pages 592-602.
    6. Gong, Changming & Liu, Jiajun & Peng, Legao & Liu, Fenghua, 2017. "Numerical study of effect of injection and ignition timings on combustion and unregulated emissions of DISI methanol engine during cold start," Renewable Energy, Elsevier, vol. 112(C), pages 457-465.
    7. Gong, Changming & Sun, Jingzhen & Liu, Fenghua, 2021. "Numerical research on combustion and emissions behaviors of a medium compression ratio direct-injection twin-spark plug synchronous ignition methanol engine under steady-state lean-burn conditions," Energy, Elsevier, vol. 215(PB).
    8. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    9. Gong, Changming & Yu, Jiawei & Wang, Kang & Liu, Jiajun & Huang, Wei & Si, Xiankai & Wei, Fuxing & Liu, Fenghua & Han, Yongqiang, 2018. "Numerical study of plasma produced ozone assisted combustion in a direct injection spark ignition methanol engine," Energy, Elsevier, vol. 153(C), pages 1028-1037.
    10. Ji, Changwei & Yang, Jinxin & Liu, Xiaolong & Wang, Shuofeng & Zhang, Bo & Wang, Du, 2016. "Enhancing the fuel economy and emissions performance of a gasoline engine-powered vehicle with idle elimination and hydrogen start," Applied Energy, Elsevier, vol. 182(C), pages 135-144.
    11. Morganti, Kai & Al-Abdullah, Marwan & Alzubail, Abdullah & Kalghatgi, Gautam & Viollet, Yoann & Head, Robert & Khan, Ahmad & Abdul-Manan, Amir, 2017. "Synergistic engine-fuel technologies for light-duty vehicles: Fuel economy and Greenhouse Gas Emissions," Applied Energy, Elsevier, vol. 208(C), pages 1538-1561.
    12. Awad, Omar I. & Mamat, R. & Ibrahim, Thamir K. & Hammid, Ali Thaeer & Yusri, I.M. & Hamidi, Mohd Adnin & Humada, Ali M. & Yusop, A.F., 2018. "Overview of the oxygenated fuels in spark ignition engine: Environmental and performance," Renewable and Sustainable Energy Reviews, Elsevier, vol. 91(C), pages 394-408.
    13. Gong, Changming & Li, Zhaohui & Sun, Jingzhen & Liu, Fenghua, 2020. "Evaluation on combustion and lean-burn limitof a medium compression ratio hydrogen/methanol dual-injection spark-ignition engine under methanol late-injection," Applied Energy, Elsevier, vol. 277(C).
    14. Gong, Changming & Zhang, Zilei & Sun, Jingzhen & Chen, Yulin & Liu, Fenghua, 2020. "Computational study of nozzle spray-line distribution effects on stratified mixture formation, combustion and emissions of a high compression ratio DISI methanol engine under lean-burn condition," Energy, Elsevier, vol. 205(C).
    15. Awad, Omar I. & Mamat, R. & Ali, Obed M. & Sidik, N.A.C. & Yusaf, T. & Kadirgama, K. & Kettner, Maurice, 2018. "Alcohol and ether as alternative fuels in spark ignition engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2586-2605.
    16. Zhen, Xudong & Wang, Yang, 2013. "Study of ignition in a high compression ratio SI (spark ignition) methanol engine using LES (large eddy simulation) with detailed chemical kinetics," Energy, Elsevier, vol. 59(C), pages 549-558.
    17. Jiang, Chenxu & Li, Zilong & Qian, Yong & Wang, Xiaole & Zhang, Yahui & Lu, Xingcai, 2018. "Influences of fuel injection strategies on combustion performance and regular/irregular emissions in a turbocharged gasoline direct injection engine: Commercial gasoline versus multi-components gasoli," Energy, Elsevier, vol. 157(C), pages 173-187.
    18. Gong, Changming & Yi, Lin & Zhang, Zilei & Sun, Jingzhen & Liu, Fenghua, 2020. "Assessment of ultra-lean burn characteristics for a stratified-charge direct-injection spark-ignition methanol engine under different high compression ratios," Applied Energy, Elsevier, vol. 261(C).
    19. Gong, Changming & Liu, Fenghua & Sun, Jingzhen & Wang, Kang, 2016. "Effect of compression ratio on performance and emissions of a stratified-charge DISI (direct injection spark ignition) methanol engine," Energy, Elsevier, vol. 96(C), pages 166-175.
    20. Zhang, Bo & Ji, Changwei & Wang, Shuofeng & Liu, Xiaolong, 2014. "Combustion and emissions characteristics of a spark-ignition engine fueled with hydrogen–methanol blends under lean and various loads conditions," Energy, Elsevier, vol. 74(C), pages 829-835.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:157:y:2015:i:c:p:134-143. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.