IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v121y2017icp43-54.html
   My bibliography  Save this article

Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends

Author

Listed:
  • Li, Yuqiang
  • Meng, Lei
  • Nithyanandan, Karthik
  • Lee, Timothy H.
  • Lin, Yilu
  • Lee, Chia-fon F.
  • Liao, Shengming

Abstract

Bio-butanol is typically produced by acetone-butanol-ethanol (ABE) fermentation, however, the recovery of bio-butanol from the ABE mixture involves high costs and energy consumption. Hence it is of interest to study the intermediate fermentation product, i.e. ABE, as a potentially alternative fuel. In this study, an experimental investigation of the performance, combustion and emission characteristics of a port fuel-injection SI engine fueled with ABE-gasoline blends was carried out. By testing different ABE-gasoline blends with varying ABE content (0 vol%, 10 vol%, 30 vol% and 60 vol% referred to as G100, ABE10, ABE30 and ABE60), ABE formulation (A:B:E of 1:8:1, 3:6:1 and 5:4:1 referred to as ABE(181), ABE(361) and ABE(541)), and water content (0.5 vol% and 1 vol% water referred to as W0.5 and W1), it was found that ABE(361)30 performed well in terms of engine performance and emissions, including brake thermal efficiency (BTE), brake specific fuel consumption (BSFC), carbon monoxide (CO), unburned hydrocarbons (UHC) and nitrogen oxides (NOx) emissions. Then, ABE(361)30 was compared with conventional fuels, including E30, B30 (30 vol% ethanol or butanol blended with gasoline) and pure gasoline (G100) under various equivalence ratios and engine loads. Overall, a higher BTE (0.2–1.4%) and lower CO (1.4–4.4%), UHC (0.3–9.9%) and NOx (4.2–14.6%) emissions were observed for ABE(361)30 compared to those of G100 in some cases. Therefore, ABE could be a good alternative fuel to gasoline due to the environmentally benign manufacturing process (from non-edible biomass feedstock and without a recovery process), and the potential to improve energy efficiency and reduce pollutant emissions.

Suggested Citation

  • Li, Yuqiang & Meng, Lei & Nithyanandan, Karthik & Lee, Timothy H. & Lin, Yilu & Lee, Chia-fon F. & Liao, Shengming, 2017. "Experimental investigation of a spark ignition engine fueled with acetone-butanol-ethanol and gasoline blends," Energy, Elsevier, vol. 121(C), pages 43-54.
  • Handle: RePEc:eee:energy:v:121:y:2017:i:c:p:43-54
    DOI: 10.1016/j.energy.2016.12.111
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544216319168
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2016.12.111?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. García, Verónica & Päkkilä, Johanna & Ojamo, Heikki & Muurinen, Esa & Keiski, Riitta L., 2011. "Challenges in biobutanol production: How to improve the efficiency?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 964-980, February.
    2. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    3. Chang, Yu-Cheng & Lee, Wen-Jhy & Wu, Tser Son & Wu, Chang-Yu & Chen, Shui-Jen, 2014. "Use of water containing acetone–butanol–ethanol for NOx-PM (nitrogen oxide-particulate matter) trade-off in the diesel engine fueled with biodiesel," Energy, Elsevier, vol. 64(C), pages 678-687.
    4. Deng, Banglin & Fu, Jianqin & Zhang, Daming & Yang, Jing & Feng, Renhua & Liu, Jingping & Li, Ke & Liu, Xiaoqiang, 2013. "The heat release analysis of bio-butanol/gasoline blends on a high speed SI (spark ignition) engine," Energy, Elsevier, vol. 60(C), pages 230-241.
    5. Zhou, Nan & Huo, Ming & Wu, Han & Nithyanandan, Karthik & Lee, Chia-fon F. & Wang, Qingnian, 2014. "Low temperature spray combustion of acetone–butanol–ethanol (ABE) and diesel blends," Applied Energy, Elsevier, vol. 117(C), pages 104-115.
    6. Liu, Teng & E., Jiaqiang & Yang, Wenming & Hui, An & Cai, Hao, 2016. "Development of a skeletal mechanism for biodiesel blend surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 162(C), pages 278-288.
    7. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    8. Sorda, Giovanni & Banse, Martin & Kemfert, Claudia, 2010. "An overview of biofuel policies across the world," Energy Policy, Elsevier, vol. 38(11), pages 6977-6988, November.
    9. Jin, Chao & Yao, Mingfa & Liu, Haifeng & Lee, Chia-fon F. & Ji, Jing, 2011. "Progress in the production and application of n-butanol as a biofuel," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 4080-4106.
    10. Kumar, Manish & Gayen, Kalyan, 2011. "Developments in biobutanol production: New insights," Applied Energy, Elsevier, vol. 88(6), pages 1999-2012, June.
    11. Canakci, Mustafa & Ozsezen, Ahmet Necati & Alptekin, Ertan & Eyidogan, Muharrem, 2013. "Impact of alcohol–gasoline fuel blends on the exhaust emission of an SI engine," Renewable Energy, Elsevier, vol. 52(C), pages 111-117.
    12. Chang, Yu-Cheng & Lee, Wen-Jhy & Lin, Sheng-Lun & Wang, Lin-Chi, 2013. "Green energy: Water-containing acetone–butanol–ethanol diesel blends fueled in diesel engines," Applied Energy, Elsevier, vol. 109(C), pages 182-191.
    13. Singh, Suraj Bhan & Dhar, Atul & Agarwal, Avinash Kumar, 2015. "Technical feasibility study of butanol–gasoline blends for powering medium-duty transportation spark ignition engine," Renewable Energy, Elsevier, vol. 76(C), pages 706-716.
    14. E, Jiaqiang & Liu, Teng & Yang, Wenming & Deng, Yuanwang & Gong, Jinke, 2016. "A skeletal mechanism modeling on soot emission characteristics for biodiesel surrogates with varying fatty acid methyl esters proportion," Applied Energy, Elsevier, vol. 181(C), pages 322-331.
    15. Kumar, Satish & Cho, Jae Hyun & Park, Jaedeuk & Moon, Il, 2013. "Advances in diesel–alcohol blends and their effects on the performance and emissions of diesel engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 22(C), pages 46-72.
    16. Demirbas, Ayhan, 2009. "Political, economic and environmental impacts of biofuels: A review," Applied Energy, Elsevier, vol. 86(Supplemen), pages 108-117, November.
    17. Wu, Han & Nithyanandan, Karthik & Zhang, Jiaxiang & Lin, Yilu & Lee, Timothy H. & Lee, Chia-fon F. & Zhang, Chunhua, 2015. "Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends," Applied Energy, Elsevier, vol. 149(C), pages 367-378.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Zhen, Xudong & Wang, Yang & Liu, Daming, 2020. "Bio-butanol as a new generation of clean alternative fuel for SI (spark ignition) and CI (compression ignition) engines," Renewable Energy, Elsevier, vol. 147(P1), pages 2494-2521.
    2. Nguyen, Dinh Duc & Moghaddam, Hesam & Pirouzfar, Vahid & Fayyazbakhsh, Ahmad & Su, Chia-Hung, 2021. "Improving the gasoline properties by blending butanol-Al2O3 to optimize the engine performance and reduce air pollution," Energy, Elsevier, vol. 218(C).
    3. Mourad, M. & Mahmoud, Khaled R.M., 2018. "Performance investigation of passenger vehicle fueled by propanol/gasoline blend according to a city driving cycle," Energy, Elsevier, vol. 149(C), pages 741-749.
    4. Duan, Xiongbo & Liu, Jingping & Yao, Jun & Chen, Zheng & Wu, Cheng & Chen, Ceyuan & Dong, Hao, 2018. "Performance, combustion and knock assessment of a high compression ratio and lean-burn heavy-duty spark-ignition engine fuelled with n-butane and liquefied methane gas blend," Energy, Elsevier, vol. 158(C), pages 256-268.
    5. Li, Yuanxu & Ning, Zhi & Lee, Chia-fon F. & Yan, Junhao & Lee, Timothy H., 2019. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine," Energy, Elsevier, vol. 168(C), pages 1157-1167.
    6. Jufang Zhang & Xiumin Yu & Zezhou Guo & Yinan Li & Jiahua Zhang & Dongjie Liu, 2022. "Study on Combustion and Emissions of a Spark Ignition Engine with Gasoline Port Injection Plus Acetone–Butanol–Ethanol (ABE) Direct Injection under Different Speeds and Loads," Energies, MDPI, vol. 15(19), pages 1-22, September.
    7. Liu, Teng & E, Jiaqiang & Yang, W.M. & Deng, Yuangwang & An, H. & Zhang, Zhiqing & Pham, Minhhieu, 2018. "Investigation on the applicability for reaction rates adjustment of the optimized biodiesel skeletal mechanism," Energy, Elsevier, vol. 150(C), pages 1031-1038.
    8. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    9. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    10. Pandey, Jayashish Kumar & Kumar, G.N., 2022. "Effects of hydrogen assisted combustion of EBNOL IN SI engines under variable compression ratio and ignition timing," Energy, Elsevier, vol. 246(C).
    11. Zhang, Zhicai & Zheng, Huihua & Qian, Jingya, 2023. "Pretreatment with a combination of steam explosion and NaOH increases butanol production of enzymatically hydrolyzed corn stover," Renewable Energy, Elsevier, vol. 203(C), pages 301-311.
    12. Li, Yuqiang & Lin, Shoulong & Huang, Long & Liu, Jiangwei, 2024. "A skeletal chemical reaction mechanism for gasoline-ABE blends combustion in internal combustion engine," Energy, Elsevier, vol. 286(C).
    13. Duan, Xiongbo & Liu, Jingping & Tan, Yonghao & Luo, Baojun & Guo, Genmiao & Wu, Zhenkuo & Liu, Weiqiang & Li, Yangyang, 2018. "Influence of single injection and two-stagnation injection strategy on thermodynamic process and performance of a turbocharged direct-injection spark-ignition engine fuelled with ethanol and gasoline ," Applied Energy, Elsevier, vol. 228(C), pages 942-953.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Yuqiang & Chen, Yong & Wu, Gang & Liu, Jiangwei, 2018. "Experimental evaluation of water-containing isopropanol-n-butanol-ethanol and gasoline blend as a fuel candidate in spark-ignition engine," Applied Energy, Elsevier, vol. 219(C), pages 42-52.
    2. Elfasakhany, Ashraf, 2017. "Investigations on performance and pollutant emissions of spark-ignition engines fueled with n-butanol–, isobutanol–, ethanol–, methanol–, and acetone–gasoline blends: A comparative study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 71(C), pages 404-413.
    3. Yuanxu Li & Zhi Ning & Chia-fon F. Lee & Timothy H. Lee & Junhao Yan, 2018. "Performance and Regulated/Unregulated Emission Evaluation of a Spark Ignition Engine Fueled with Acetone–Butanol–Ethanol and Gasoline Blends," Energies, MDPI, vol. 11(5), pages 1-16, May.
    4. Wu, Han & Nithyanandan, Karthik & Zhang, Jiaxiang & Lin, Yilu & Lee, Timothy H. & Lee, Chia-fon F. & Zhang, Chunhua, 2015. "Impacts of Acetone–Butanol–Ethanol (ABE) ratio on spray and combustion characteristics of ABE–diesel blends," Applied Energy, Elsevier, vol. 149(C), pages 367-378.
    5. Biswal, Abinash & Kale, Rakesh & Balusamy, Saravanan & Banerjee, Raja & Kolhe, Pankaj, 2019. "Lemon peel oil as an alternative fuel for GDI engines: A spray characterization perspective," Renewable Energy, Elsevier, vol. 142(C), pages 249-263.
    6. Han, Kai & Pang, Bo & Zhao, Changlu & Ni, Zhaojing & Qi, Zhengda, 2019. "An experimental study of the puffing and evaporation characteristics of acetone–butanol–ethanol (ABE) and diesel blend droplets," Energy, Elsevier, vol. 183(C), pages 331-340.
    7. E, Jiaqiang & Pham, Minhhieu & Zhao, D. & Deng, Yuanwang & Le, DucHieu & Zuo, Wei & Zhu, Hao & Liu, Teng & Peng, Qingguo & Zhang, Zhiqing, 2017. "Effect of different technologies on combustion and emissions of the diesel engine fueled with biodiesel: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 620-647.
    8. Liu, Kaimin & Fu, Jianqin & Deng, Banglin & Yang, Jing & Tang, Qijun & Liu, Jingping, 2014. "The influences of pressure and temperature on laminar flame propagations of n-butanol, iso-octane and their blends," Energy, Elsevier, vol. 73(C), pages 703-715.
    9. Han, Kai & Liu, Yu & Wang, Chengxin & Tian, Junjian & Song, Zhihui & Lin, Qizhao & Meng, Kesheng, 2021. "Experimental study on the evaporation characteristics of biodiesel-ABE blended droplets," Energy, Elsevier, vol. 236(C).
    10. Mwangi, John Kennedy & Lee, Wen-Jhy & Chang, Yu-Cheng & Chen, Chia-Yang & Wang, Lin-Chi, 2015. "An overview: Energy saving and pollution reduction by using green fuel blends in diesel engines," Applied Energy, Elsevier, vol. 159(C), pages 214-236.
    11. Li, Yuanxu & Ning, Zhi & Lee, Chia-fon F. & Yan, Junhao & Lee, Timothy H., 2019. "Effect of acetone-butanol-ethanol (ABE)–gasoline blends on regulated and unregulated emissions in spark-ignition engine," Energy, Elsevier, vol. 168(C), pages 1157-1167.
    12. Han, Kai & Pang, Bo & Ma, Xiaokang & Chen, Hao & Song, Guoqian & Ni, Zhaojing, 2017. "An experimental study of the burning characteristics of acetone–butanol–ethanol and diesel blend droplets," Energy, Elsevier, vol. 139(C), pages 853-861.
    13. Iodice, Paolo & Senatore, Adolfo & Langella, Giuseppe & Amoresano, Amedeo, 2016. "Effect of ethanol–gasoline blends on CO and HC emissions in last generation SI engines within the cold-start transient: An experimental investigation," Applied Energy, Elsevier, vol. 179(C), pages 182-190.
    14. Bergthorson, Jeffrey M. & Thomson, Murray J., 2015. "A review of the combustion and emissions properties of advanced transportation biofuels and their impact on existing and future engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 1393-1417.
    15. Dhamodaran, Gopinath & Esakkimuthu, Ganapathy Sundaram & Pochareddy, Yashwanth Kutti & Sivasubramanian, Harish, 2017. "Investigation of n-butanol as fuel in a four-cylinder MPFI SI engine," Energy, Elsevier, vol. 125(C), pages 726-735.
    16. Vallinayagam, R. & Vedharaj, S. & Yang, W.M. & Roberts, W.L. & Dibble, R.W., 2015. "Feasibility of using less viscous and lower cetane (LVLC) fuels in a diesel engine: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1166-1190.
    17. Awad, Omar I. & Ali, Obed M. & Mamat, Rizalman & Abdullah, A.A. & Najafi, G. & Kamarulzaman, M.K. & Yusri, I.M. & Noor, M.M., 2017. "Using fusel oil as a blend in gasoline to improve SI engine efficiencies: A comprehensive review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 69(C), pages 1232-1242.
    18. Merola, Simona Silvia & Tornatore, Cinzia & Irimescu, Adrian & Marchitto, Luca & Valentino, Gerardo, 2016. "Optical diagnostics of early flame development in a DISI (direct injection spark ignition) engine fueled with n-butanol and gasoline," Energy, Elsevier, vol. 108(C), pages 50-62.
    19. Kujawska, Anna & Kujawski, Jan & Bryjak, Marek & Kujawski, Wojciech, 2015. "ABE fermentation products recovery methods—A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 648-661.
    20. Mourad, M. & Mahmoud, K., 2019. "Investigation into SI engine performance characteristics and emissions fuelled with ethanol/butanol-gasoline blends," Renewable Energy, Elsevier, vol. 143(C), pages 762-771.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:121:y:2017:i:c:p:43-54. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.