IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v111y2013icp1162-1171.html
   My bibliography  Save this article

Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends

Author

Listed:
  • Costagliola, M.A.
  • De Simio, L.
  • Iannaccone, S.
  • Prati, M.V.

Abstract

In this experimental work, the influence of some bio-fuels on the spark-ignition engine combustion efficiency and engine-out emissions was investigated. A conventional 1.6l port injection engine was tested over steady-states, with some bio-ethanol/gasoline blends (0, 10, 20, 30, and 85vol% of ethanol in gasoline) and with a 10vol% of n-butanol in gasoline. Study of combustion development was made through the heat release analysis of pressure cycles measured in combustion chamber. Regulated emissions, unregulated organics (Polycyclic Aromatic Hydrocarbons, carbonyl compounds and Volatile Organic Compounds) and particulate were measured. Particulate was characterized in terms of total particle number (PN) and size distribution between 7nm up to 10μm. The tests were carried out at stoichiometric conditions in closed loop and spark advance was optimized with a calibration tool software in order to have the same peak pressure position. By fueling the alcohol blends, the engine-out particulate emissions are strongly reduced compared to gasoline. The PN reduction percentage ranges between 60% and 90%. The benefits also concern some gaseous unregulated species very harmful for humans, such as benzene and benzo(a)pyrene (reduction of almost 50% and 70% respectively). The highest oxygen content of alcohol blends, instead, provides an increasing of the total carbonylic emissions.

Suggested Citation

  • Costagliola, M.A. & De Simio, L. & Iannaccone, S. & Prati, M.V., 2013. "Combustion efficiency and engine out emissions of a S.I. engine fueled with alcohol/gasoline blends," Applied Energy, Elsevier, vol. 111(C), pages 1162-1171.
  • Handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1162-1171
    DOI: 10.1016/j.apenergy.2012.09.042
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261912006836
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2012.09.042?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Wen, Lan-bin & Xin, Chen-Ying & Yang, Shyue-Cheng, 2010. "The effect of adding dimethyl carbonate (DMC) and ethanol to unleaded gasoline on exhaust emission," Applied Energy, Elsevier, vol. 87(1), pages 115-121, January.
    2. Maurya, Rakesh Kumar & Agarwal, Avinash Kumar, 2011. "Experimental study of combustion and emission characteristics of ethanol fuelled port injected homogeneous charge compression ignition (HCCI) combustion engine," Applied Energy, Elsevier, vol. 88(4), pages 1169-1180, April.
    3. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2012. "Combustion performance of 2,5-dimethylfuran blends using dual-injection compared to direct-injection in a SI engine," Applied Energy, Elsevier, vol. 98(C), pages 59-68.
    4. Topgül, Tolga & Yücesu, Hüseyin Serdar & Çinar, Can & Koca, Atilla, 2006. "The effects of ethanol–unleaded gasoline blends and ignition timing on engine performance and exhaust emissions," Renewable Energy, Elsevier, vol. 31(15), pages 2534-2542.
    5. Visakhamoorthy, Sona & Wen, John Z. & Sivoththaman, Siva & Koch, Charles Robert, 2012. "Numerical study of a butanol/heptane fuelled Homogeneous Charge Compression Ignition (HCCI) engine utilizing negative valve overlap," Applied Energy, Elsevier, vol. 94(C), pages 166-173.
    6. Irimescu, Adrian, 2012. "Performance and fuel conversion efficiency of a spark ignition engine fueled with iso-butanol," Applied Energy, Elsevier, vol. 96(C), pages 477-483.
    7. Niven, Robert K., 2005. "Ethanol in gasoline: environmental impacts and sustainability review article," Renewable and Sustainable Energy Reviews, Elsevier, vol. 9(6), pages 535-555, December.
    8. Wu, Xuesong & Daniel, Ritchie & Tian, Guohong & Xu, Hongming & Huang, Zuohua & Richardson, Dave, 2011. "Dual-injection: The flexible, bi-fuel concept for spark-ignition engines fuelled with various gasoline and biofuel blends," Applied Energy, Elsevier, vol. 88(7), pages 2305-2314, July.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Masum, B.M. & Masjuki, H.H. & Kalam, M.A. & Rizwanul Fattah, I.M. & Palash, S.M. & Abedin, M.J., 2013. "Effect of ethanol–gasoline blend on NOx emission in SI engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 24(C), pages 209-222.
    2. Zhang, Bo & Sarathy, S. Mani, 2016. "Lifecycle optimized ethanol-gasoline blends for turbocharged engines," Applied Energy, Elsevier, vol. 181(C), pages 38-53.
    3. Rezaei, Javad & Shahbakhti, Mahdi & Bahri, Bahram & Aziz, Azhar Abdul, 2015. "Performance prediction of HCCI engines with oxygenated fuels using artificial neural networks," Applied Energy, Elsevier, vol. 138(C), pages 460-473.
    4. Yao, Yung-Chen & Tsai, Jiun-Horng & Wang, I-Ting, 2013. "Emissions of gaseous pollutant from motorcycle powered by ethanol–gasoline blend," Applied Energy, Elsevier, vol. 102(C), pages 93-100.
    5. Irimescu, Adrian & Vasiu, Gabriel & Tordai, Gavrilă Trif, 2014. "Performance and emissions of a small scale generator powered by a spark ignition engine with adaptive fuel injection control," Applied Energy, Elsevier, vol. 121(C), pages 196-206.
    6. Hernandez, Marcel & Menchaca, Lizette & Mendoza, Alberto, 2014. "Fuel economy and emissions of light-duty vehicles fueled with ethanol–gasoline blends in a Mexican City," Renewable Energy, Elsevier, vol. 72(C), pages 236-242.
    7. Mazen A. Eldeeb & Benjamin Akih-Kumgeh, 2018. "Recent Trends in the Production, Combustion and Modeling of Furan-Based Fuels," Energies, MDPI, vol. 11(3), pages 1-47, February.
    8. Daniel, Ritchie & Xu, Hongming & Wang, Chongming & Richardson, Dave & Shuai, Shijin, 2013. "Gaseous and particulate matter emissions of biofuel blends in dual-injection compared to direct-injection and port injection," Applied Energy, Elsevier, vol. 105(C), pages 252-261.
    9. Ma, Xiao & Xu, Hongming & Jiang, Changzhao & Shuai, Shijin, 2014. "Ultra-high speed imaging and OH-LIF study of DMF and MF combustion in a DISI optical engine," Applied Energy, Elsevier, vol. 122(C), pages 247-260.
    10. Yusri, I.M. & Mamat, R. & Najafi, G. & Razman, A. & Awad, Omar I. & Azmi, W.H. & Ishak, W.F.W. & Shaiful, A.I.M., 2017. "Alcohol based automotive fuels from first four alcohol family in compression and spark ignition engine: A review on engine performance and exhaust emissions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 169-181.
    11. Clairotte, M. & Adam, T.W. & Zardini, A.A. & Manfredi, U. & Martini, G. & Krasenbrink, A. & Vicet, A. & Tournié, E. & Astorga, C., 2013. "Effects of low temperature on the cold start gaseous emissions from light duty vehicles fuelled by ethanol-blended gasoline," Applied Energy, Elsevier, vol. 102(C), pages 44-54.
    12. Thangavelu, Saravana Kannan & Ahmed, Abu Saleh & Ani, Farid Nasir, 2016. "Review on bioethanol as alternative fuel for spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 820-835.
    13. Wei, Haiqiao & Feng, Dengquan & Shu, Gequn & Pan, Mingzhang & Guo, Yubin & Gao, Dongzhi & Li, Wei, 2014. "Experimental investigation on the combustion and emissions characteristics of 2-methylfuran gasoline blend fuel in spark-ignition engine," Applied Energy, Elsevier, vol. 132(C), pages 317-324.
    14. Huang, Yuhan & Surawski, Nic C. & Zhuang, Yuan & Zhou, John L. & Hong, Guang, 2021. "Dual injection: An effective and efficient technology to use renewable fuels in spark ignition engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 143(C).
    15. Kumar, T. Sathish & Ashok, B., 2021. "Critical review on combustion phenomena of low carbon alcohols in SI engine with its challenges and future directions," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    16. Qian, Yong & Zhu, Lifeng & Wang, Yue & Lu, Xingcai, 2015. "Recent progress in the development of biofuel 2,5-dimethylfuran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 633-646.
    17. Koç, Mustafa & Sekmen, Yakup & Topgül, Tolga & Yücesu, Hüseyin Serdar, 2009. "The effects of ethanol–unleaded gasoline blends on engine performance and exhaust emissions in a spark-ignition engine," Renewable Energy, Elsevier, vol. 34(10), pages 2101-2106.
    18. Liu, Kaimin & Li, Yangtao & Yang, Jing & Deng, Banglin & Feng, Renhua & Huang, Yanjun, 2018. "Comprehensive study of key operating parameters on combustion characteristics of butanol-gasoline blends in a high speed SI engine," Applied Energy, Elsevier, vol. 212(C), pages 13-32.
    19. Ghazimirsaied, Ahmad & Koch, Charles Robert, 2012. "Controlling cyclic combustion timing variations using a symbol-statistics predictive approach in an HCCI engine," Applied Energy, Elsevier, vol. 92(C), pages 133-146.
    20. Renzi, Massimiliano & Bietresato, Marco & Mazzetto, Fabrizio, 2016. "An experimental evaluation of the performance of a SI internal combustion engine for agricultural purposes fuelled with different bioethanol blends," Energy, Elsevier, vol. 115(P1), pages 1069-1080.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:111:y:2013:i:c:p:1162-1171. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.