IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p65-69.html
   My bibliography  Save this article

Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends

Author

Listed:
  • Deh Kiani, M. Kiani
  • Ghobadian, B.
  • Tavakoli, T.
  • Nikbakht, A.M.
  • Najafi, G.

Abstract

This study deals with artificial neural network (ANN) modeling of a spark ignition engine to predict the engine brake power, output torque and exhaust emissions (CO, CO2, NOx and HC) of the engine. To acquire data for training and testing of the proposed ANN, a four-cylinder, four-stroke test engine was fuelled with ethanol-gasoline blended fuels with various percentages of ethanol (0, 5, 10,15 and 20%), and operated at different engine speeds and loads. An ANN model based on standard back-propagation algorithm for the engine was developed using some of the experimental data for training. The performance of the ANN was validated by comparing the prediction dataset with the experimental results. Results showed that the ANN provided the best accuracy in modeling the emission indices with correlation coefficient equal to 0.98, 0.96, 0.90 and 0.71 for CO, CO2, HC and NOx, and 0.99 and 0.96 for torque and brake power respectively. Generally, the artificial neural network offers the advantage of being fast, accurate and reliable in the prediction or approximation affairs, especially when numerical and mathematical methods fail.

Suggested Citation

  • Deh Kiani, M. Kiani & Ghobadian, B. & Tavakoli, T. & Nikbakht, A.M. & Najafi, G., 2010. "Application of artificial neural networks for the prediction of performance and exhaust emissions in SI engine using ethanol- gasoline blends," Energy, Elsevier, vol. 35(1), pages 65-69.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:65-69
    DOI: 10.1016/j.energy.2009.08.034
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209003685
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.08.034?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Hannani, S.K. & Hessari, E. & Fardadi, M. & Jeddi, M.K., 2006. "Mathematical modeling of cooking pots’ thermal efficiency using a combined experimental and neural network method," Energy, Elsevier, vol. 31(14), pages 2969-2985.
    3. Gölcü, Mustafa & Sekmen, Yakup & ErduranlI, Perihan & Sahir Salman, M., 2005. "Artificial neural-network based modeling of variable valve-timing in a spark-ignition engine," Applied Energy, Elsevier, vol. 81(2), pages 187-197, June.
    4. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    5. Kalogirou, Soteris A., 2000. "Applications of artificial neural-networks for energy systems," Applied Energy, Elsevier, vol. 67(1-2), pages 17-35, September.
    6. Canakci, Mustafa & Erdil, Ahmet & Arcaklioglu, Erol, 2006. "Performance and exhaust emissions of a biodiesel engine," Applied Energy, Elsevier, vol. 83(6), pages 594-605, June.
    7. Çelik, Veli & Arcaklioglu, Erol, 2005. "Performance maps of a diesel engine," Applied Energy, Elsevier, vol. 81(3), pages 247-259, July.
    8. Prieto, M.M & Montañés, E & Menéndez, O, 2001. "Power plant condenser performance forecasting using a non-fully connected artificial neural network," Energy, Elsevier, vol. 26(1), pages 65-79.
    9. Arcaklioglu, Erol & Çelikten, Ismet, 2005. "A diesel engine's performance and exhaust emissions," Applied Energy, Elsevier, vol. 80(1), pages 11-22, January.
    10. De, S. & Kaiadi, M. & Fast, M. & Assadi, M., 2007. "Development of an artificial neural network model for the steam process of a coal biomass cofired combined heat and power (CHP) plant in Sweden," Energy, Elsevier, vol. 32(11), pages 2099-2109.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Najafi, G. & Ghobadian, B. & Tavakoli, T. & Buttsworth, D.R. & Yusaf, T.F. & Faizollahnejad, M., 2009. "Performance and exhaust emissions of a gasoline engine with ethanol blended gasoline fuels using artificial neural network," Applied Energy, Elsevier, vol. 86(5), pages 630-639, May.
    2. Ghobadian, B. & Rahimi, H. & Nikbakht, A.M. & Najafi, G. & Yusaf, T.F., 2009. "Diesel engine performance and exhaust emission analysis using waste cooking biodiesel fuel with an artificial neural network," Renewable Energy, Elsevier, vol. 34(4), pages 976-982.
    3. Roy, Sumit & Banerjee, Rahul & Bose, Probir Kumar, 2014. "Performance and exhaust emissions prediction of a CRDI assisted single cylinder diesel engine coupled with EGR using artificial neural network," Applied Energy, Elsevier, vol. 119(C), pages 330-340.
    4. Kurt, Hüseyin & Kayfeci, Muhammet, 2009. "Prediction of thermal conductivity of ethylene glycol-water solutions by using artificial neural networks," Applied Energy, Elsevier, vol. 86(10), pages 2244-2248, October.
    5. Ganesan, P. & Rajakarunakaran, S. & Thirugnanasambandam, M. & Devaraj, D., 2015. "Artificial neural network model to predict the diesel electric generator performance and exhaust emissions," Energy, Elsevier, vol. 83(C), pages 115-124.
    6. Najjar, Yousef S.H., 2011. "Comparison of performance of a Greener direct-injection stratified-charge (DISC) engine with a spark-ignition engine using a simplified model," Energy, Elsevier, vol. 36(7), pages 4136-4143.
    7. Shivakumar & Srinivasa Pai, P. & Shrinivasa Rao, B.R., 2011. "Artificial Neural Network based prediction of performance and emission characteristics of a variable compression ratio CI engine using WCO as a biodiesel at different injection timings," Applied Energy, Elsevier, vol. 88(7), pages 2344-2354, July.
    8. Roy, Sumit & Ghosh, Ashmita & Das, Ajoy Kumar & Banerjee, Rahul, 2015. "Development and validation of a GEP model to predict the performance and exhaust emission parameters of a CRDI assisted single cylinder diesel engine coupled with EGR," Applied Energy, Elsevier, vol. 140(C), pages 52-64.
    9. Kshirsagar, Charudatta M. & Anand, Ramanathan, 2017. "Artificial neural network applied forecast on a parametric study of Calophyllum inophyllum methyl ester-diesel engine out responses," Applied Energy, Elsevier, vol. 189(C), pages 555-567.
    10. Ng, Hoon Kiat & Gan, Suyin & Ng, Jo-Han & Pang, Kar Mun, 2013. "Simulation of biodiesel combustion in a light-duty diesel engine using integrated compact biodiesel–diesel reaction mechanism," Applied Energy, Elsevier, vol. 102(C), pages 1275-1287.
    11. Kara Togun, Necla & Baysec, Sedat, 2010. "Prediction of torque and specific fuel consumption of a gasoline engine by using artificial neural networks," Applied Energy, Elsevier, vol. 87(1), pages 349-355, January.
    12. Mehra, Roopesh Kumar & Duan, Hao & Luo, Sijie & Rao, Anas & Ma, Fanhua, 2018. "Experimental and artificial neural network (ANN) study of hydrogen enriched compressed natural gas (HCNG) engine under various ignition timings and excess air ratios," Applied Energy, Elsevier, vol. 228(C), pages 736-754.
    13. Marietta Markiewicz & Łukasz Muślewski, 2019. "The Impact of Powering an Engine with Fuels from Renewable Energy Sources including its Software Modification on a Drive Unit Performance Parameters," Sustainability, MDPI, vol. 11(23), pages 1-16, November.
    14. Mohamed Ismail, Harun & Ng, Hoon Kiat & Queck, Cheen Wei & Gan, Suyin, 2012. "Artificial neural networks modelling of engine-out responses for a light-duty diesel engine fuelled with biodiesel blends," Applied Energy, Elsevier, vol. 92(C), pages 769-777.
    15. Waqar Muhammad Ashraf & Ghulam Moeen Uddin & Syed Muhammad Arafat & Sher Afghan & Ahmad Hassan Kamal & Muhammad Asim & Muhammad Haider Khan & Muhammad Waqas Rafique & Uwe Naumann & Sajawal Gul Niazi &, 2020. "Optimization of a 660 MW e Supercritical Power Plant Performance—A Case of Industry 4.0 in the Data-Driven Operational Management Part 1. Thermal Efficiency," Energies, MDPI, vol. 13(21), pages 1-33, October.
    16. Çay, Yusuf & Korkmaz, Ibrahim & Çiçek, Adem & Kara, Fuat, 2013. "Prediction of engine performance and exhaust emissions for gasoline and methanol using artificial neural network," Energy, Elsevier, vol. 50(C), pages 177-186.
    17. Smrekar, J. & Assadi, M. & Fast, M. & Kuštrin, I. & De, S., 2009. "Development of artificial neural network model for a coal-fired boiler using real plant data," Energy, Elsevier, vol. 34(2), pages 144-152.
    18. Safieddin Ardebili, M. & Ghobadian, B. & Najafi, G. & Chegeni, A., 2011. "Biodiesel production potential from edible oil seeds in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(6), pages 3041-3044, August.
    19. Han, Dandan & E, Jiaqiang & Deng, Yuanwang & Chen, Jingwei & Leng, Erwei & Liao, Gaoliang & Zhao, Xiaohuan & Feng, Changling & Zhang, Feng, 2021. "A review of studies using hydrocarbon adsorption material for reducing hydrocarbon emissions from cold start of gasoline engine," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    20. Kljajić, Miroslav & Gvozdenac, Dušan & Vukmirović, Srdjan, 2012. "Use of Neural Networks for modeling and predicting boiler's operating performance," Energy, Elsevier, vol. 45(1), pages 304-311.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:65-69. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.