IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v78y2017icp722-730.html
   My bibliography  Save this article

A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant

Author

Listed:
  • Taner, Tolga
  • Sivrioglu, Mecit

Abstract

A general model (sugar production processes) was developed based on data provided by a real plant and provided an exergy analysis. It was explored for a techno-economical turbine power plant and the improvement of performance indicators was achieved through thermoeconomic analysis. Unit cost for the turbine power plant is found to be 3.142 [$ / kW]. The simple payback period of the turbine power plant is calculated as 4.32 years. The purpose of this study is to reduce the cost of power plant. At the same time, this study poses a thermoeconomic analysis to increase turbine power.

Suggested Citation

  • Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
  • Handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:722-730
    DOI: 10.1016/j.rser.2017.04.104
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403211730610X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2017.04.104?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    2. Nalianda, D.K. & Kyprianidis, K.G. & Sethi, V. & Singh, R., 2015. "Techno-economic viability assessments of greener propulsion technology under potential environmental regulatory policy scenarios," Applied Energy, Elsevier, vol. 157(C), pages 35-50.
    3. Dimitrova, Zlatina & Maréchal, François, 2015. "Energy integration on multi-periods and multi-usages for hybrid electric and thermal powertrains," Energy, Elsevier, vol. 83(C), pages 539-550.
    4. Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
    5. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    6. Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
    7. Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
    8. Wang, Xiao-Qiong & Li, Xiao-Ping & Li, You-Rong & Wu, Chun-Mei, 2015. "Payback period estimation and parameter optimization of subcritical organic Rankine cycle system for waste heat recovery," Energy, Elsevier, vol. 88(C), pages 734-745.
    9. Kang, Do Won & Jang, Hyuck Jun & Kim, Tong Seop, 2014. "Using compressor discharge air bypass to enhance power generation of a steam-injected gas turbine for combined heat and power," Energy, Elsevier, vol. 76(C), pages 390-399.
    10. Xiong, Jie & Zhao, Haibo & Zhang, Chao & Zheng, Chuguang & Luh, Peter B., 2012. "Thermoeconomic operation optimization of a coal-fired power plant," Energy, Elsevier, vol. 42(1), pages 486-496.
    11. Sachdev, Hira Singh & Akella, Ashok Kumar & Kumar, Niranjan, 2015. "Analysis and evaluation of small hydropower plants: A bibliographical survey," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 1013-1022.
    12. Koussa, Djohra Saheb & Koussa, Mustapha, 2015. "A feasibility and cost benefit prospection of grid connected hybrid power system (wind–photovoltaic) – Case study: An Algerian coastal site," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 628-642.
    13. Yan, Bofeng & Xue, Song & Li, Yuanfei & Duan, Jinhui & Zeng, Ming, 2016. "Gas-fired combined cooling, heating and power (CCHP) in Beijing: A techno-economic analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 63(C), pages 118-131.
    14. Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
    15. Wu, Wei & Christiana, Veni Indah & Chen, Shin-An & Hwang, Jenn-Jiang, 2015. "Design and techno-economic optimization of a stand-alone PV (photovoltaic)/FC (fuel cell)/battery hybrid power system connected to a wastewater-to-hydrogen processor," Energy, Elsevier, vol. 84(C), pages 462-472.
    16. Giuffrida, A. & Bonalumi, D. & Lozza, G., 2013. "Amine-based post-combustion CO2 capture in air-blown IGCC systems with cold and hot gas clean-up," Applied Energy, Elsevier, vol. 110(C), pages 44-54.
    17. Allan, Grant & Eromenko, Igor & Gilmartin, Michelle & Kockar, Ivana & McGregor, Peter, 2015. "The economics of distributed energy generation: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 543-556.
    18. Brouwer, Anne Sjoerd & van den Broek, Machteld & Seebregts, Ad & Faaij, André, 2015. "Operational flexibility and economics of power plants in future low-carbon power systems," Applied Energy, Elsevier, vol. 156(C), pages 107-128.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    2. Li, Shoujun & Ma, Xiaoping & Yang, Chunyu, 2018. "A combined thermal power plant investment decision-making model based on intelligent fuzzy grey model and ito stochastic process and its application," Energy, Elsevier, vol. 159(C), pages 1102-1117.
    3. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    4. Natasa Nord & Yiyu Ding & Ola Skrautvol & Stian Fossmo Eliassen, 2021. "Energy Pathways for Future Norwegian Residential Building Areas," Energies, MDPI, vol. 14(4), pages 1-21, February.
    5. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    6. Yang, Liu & Cao, Chenxi & Gan, Quanquan & Pei, Hao & Zhang, Qi & Li, Ping, 2022. "Revealing failure modes and effect of catalyst layer properties for PEM fuel cell cold start using an agglomerate model," Applied Energy, Elsevier, vol. 312(C).
    7. Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    8. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    9. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    10. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    11. Dogbe, Eunice Sefakor & Mandegari, Mohsen A. & Görgens, Johann F., 2018. "Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process," Energy, Elsevier, vol. 145(C), pages 614-625.
    12. Elias Martinez-Hernandez & Myriam A. Amezcua-Allieri & Jorge Aburto, 2021. "Assessing the Cost of Biomass and Bioenergy Production in Agroindustrial Processes," Energies, MDPI, vol. 14(14), pages 1-17, July.
    13. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    14. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    2. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    3. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    4. Isa, Normazlina Mat & Tan, Chee Wei & Yatim, A.H.M., 2018. "A comprehensive review of cogeneration system in a microgrid: A perspective from architecture and operating system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2236-2263.
    5. Liu, Wen Hui & Wan Alwi, Sharifah Rafidah & Hashim, Haslenda & Lim, Jeng Shiun & Mohammad Rozali, Nor Erniza & Ho, Wai Shin, 2016. "Sizing of Hybrid Power System with varying current type using numerical probabilistic approach," Applied Energy, Elsevier, vol. 184(C), pages 1364-1373.
    6. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    7. Nicholas, T.E.G. & Davis, T.P. & Federici, F. & Leland, J. & Patel, B.S. & Vincent, C. & Ward, S.H., 2021. "Re-examining the role of nuclear fusion in a renewables-based energy mix," Energy Policy, Elsevier, vol. 149(C).
    8. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    9. Kobayashi, Makoto & Akiho, Hiroyuki & Nakao, Yoshinobu, 2015. "Performance evaluation of porous sodium aluminate sorbent for halide removal process in oxy-fuel IGCC power generation plant," Energy, Elsevier, vol. 92(P3), pages 320-327.
    10. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2014. "Allocating resources and products in multi-hybrid multi-cogeneration: What fractions of heat and power are renewable in hybrid fossil-solar CHP?," Energy, Elsevier, vol. 78(C), pages 587-603.
    11. Zhao, Xiaoli & Chen, Haoran & Liu, Suwei & Ye, Xiaomei, 2020. "Economic & environmental effects of priority dispatch of renewable energy considering fluctuating power output of coal-fired units," Renewable Energy, Elsevier, vol. 157(C), pages 695-707.
    12. Alimou, Yacine & Maïzi, Nadia & Bourmaud, Jean-Yves & Li, Marion, 2020. "Assessing the security of electricity supply through multi-scale modeling: The TIMES-ANTARES linking approach," Applied Energy, Elsevier, vol. 279(C).
    13. Charles Neumeyer & Robert Goldston, 2016. "Dynamic EROI Assessment of the IPCC 21st Century Electricity Production Scenario," Sustainability, MDPI, vol. 8(5), pages 1-15, April.
    14. Costa-Campi, Maria Teresa & Daví-Arderius, Daniel & Trujillo-Baute, Elisa, 2018. "The economic impact of electricity losses," Energy Economics, Elsevier, vol. 75(C), pages 309-322.
    15. Oyekale, Joseph & Petrollese, Mario & Cau, Giorgio, 2020. "Modified auxiliary exergy costing in advanced exergoeconomic analysis applied to a hybrid solar-biomass organic Rankine cycle plant," Applied Energy, Elsevier, vol. 268(C).
    16. Kruyt, Bert & Lehning, Michael & Kahl, Annelen, 2017. "Potential contributions of wind power to a stable and highly renewable Swiss power supply," Applied Energy, Elsevier, vol. 192(C), pages 1-11.
    17. Moioli, Stefania & Giuffrida, Antonio & Romano, Matteo C. & Pellegrini, Laura A. & Lozza, Giovanni, 2016. "Assessment of MDEA absorption process for sequential H2S removal and CO2 capture in air-blown IGCC plants," Applied Energy, Elsevier, vol. 183(C), pages 1452-1470.
    18. Mauger, Gedeon & Tauveron, Nicolas & Bentivoglio, Fabrice & Ruby, Alain, 2019. "On the dynamic modeling of Brayton cycle power conversion systems with the CATHARE-3 code," Energy, Elsevier, vol. 168(C), pages 1002-1016.
    19. Igor Donskoy, 2023. "Techno-Economic Efficiency Estimation of Promising Integrated Oxyfuel Gasification Combined-Cycle Power Plants with Carbon Capture," Clean Technol., MDPI, vol. 5(1), pages 1-18, February.
    20. Isogai, Hirotaka & Nakagaki, Takao, 2024. "Power-to-heat amine-based post-combustion CO2 capture system with solvent storage utilizing fluctuating electricity prices," Applied Energy, Elsevier, vol. 368(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:78:y:2017:i:c:p:722-730. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.