IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v60y2016icp1140-1155.html
   My bibliography  Save this article

Identifying an economic power production system based on agricultural straw on regional basis in India

Author

Listed:
  • Singh, Jaswinder

Abstract

The utilization of biomass resources for power generation can reduce environmental emissions while fulfilling energy requirements in developing countries. But, the biomass conversion to electric power seems to be financially viable under optimized conditions (for some economic objectives). This paper presents a step-by-step methodology to determine the possibility of installation of straw based power plants in a region. Further, various issues regarding installation of power plants are discussed and reviewed. The study takes into consideration the average fuel distribution, the straw collection mechanism, the plant characteristics and the economic objectives. The methodology has been used for optimal sizing of the straw based plants in Punjab (a north Indian state) for minimum power cost and investment. The optimization models that can handle all possible restrictions for installation of the plants are applied and the results are analyzed under the influence of input parameters. The study indicates that the optimum capacity of plant is of the order of 20MW, which can produce electricity at a cost of 5Rs/kWh. Each plant requires a collection radius of 14km for providing a continuous and sustainable fuel to the plant. The capital cost required for installation of the plant has been estimated to be 45,144Rs/kW. In order to achieve these objectives, it is essential to integrate the power generation system with the biomass management system. The literature review shows that an efficient biomass recovery system is required to be developed for collection of agricultural straw (within the stipulated time) for implementation of power generation programme in the state. In overall, the study reveals that the efficient utilization of straw for electric power requires careful identification of different techno-economic parameters like biomass management cost, scale factor, fuel supply and thermal efficiency.

Suggested Citation

  • Singh, Jaswinder, 2016. "Identifying an economic power production system based on agricultural straw on regional basis in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 60(C), pages 1140-1155.
  • Handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1140-1155
    DOI: 10.1016/j.rser.2016.02.002
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032116002070
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2016.02.002?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Sarkar, Madhura & Kumar, Ajay & Tumuluru, Jaya Shankar & Patil, Krushna N. & Bellmer, Danielle D., 2014. "Gasification performance of switchgrass pretreated with torrefaction and densification," Applied Energy, Elsevier, vol. 127(C), pages 194-201.
    2. Delivand, Mitra Kami & Barz, Mirko & Gheewala, Shabbir H., 2011. "Logistics cost analysis of rice straw for biomass power generation in Thailand," Energy, Elsevier, vol. 36(3), pages 1435-1441.
    3. Singh, Jasvinder & Gu, Sai, 2010. "Biomass conversion to energy in India--A critique," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(5), pages 1367-1378, June.
    4. Jenssen, Till & König, Andreas & Eltrop, Ludger, 2014. "Bioenergy villages in Germany: Bringing a low carbon energy supply for rural areas into practice," Renewable Energy, Elsevier, vol. 61(C), pages 74-80.
    5. Kumar, Ashwani & Kumar, Kapil & Kaushik, Naresh & Sharma, Satyawati & Mishra, Saroj, 2010. "Renewable energy in India: Current status and future potentials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(8), pages 2434-2442, October.
    6. Mohammed, Y.S. & Mokhtar, A.S. & Bashir, N. & Saidur, R., 2013. "An overview of agricultural biomass for decentralized rural energy in Ghana," Renewable and Sustainable Energy Reviews, Elsevier, vol. 20(C), pages 15-25.
    7. Ravindranath, N.H. & Balachandra, P., 2009. "Sustainable bioenergy for India: Technical, economic and policy analysis," Energy, Elsevier, vol. 34(8), pages 1003-1013.
    8. Jiang, Dong & Zhuang, Dafang & Fu, Jinying & Huang, Yaohuan & Wen, Kege, 2012. "Bioenergy potential from crop residues in China: Availability and distribution," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(3), pages 1377-1382.
    9. Hiloidhari, M. & Baruah, D.C., 2011. "Crop residue biomass for decentralized electrical power generation in rural areas (part 1): Investigation of spatial availability," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1885-1892, May.
    10. Rentizelas, Athanasios A. & Tolis, Athanasios J. & Tatsiopoulos, Ilias P., 2009. "Logistics issues of biomass: The storage problem and the multi-biomass supply chain," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(4), pages 887-894, May.
    11. Asadullah, Mohammad, 2014. "Barriers of commercial power generation using biomass gasification gas: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 201-215.
    12. Balachandra, P., 2011. "Modern energy access to all in rural India: An integrated implementation strategy," Energy Policy, Elsevier, vol. 39(12), pages 7803-7814.
    13. Steubing, Bernhard & Ballmer, Isabel & Gassner, Martin & Gerber, Léda & Pampuri, Luca & Bischof, Sandro & Thees, Oliver & Zah, Rainer, 2014. "Identifying environmentally and economically optimal bioenergy plant sizes and locations: A spatial model of wood-based SNG value chains," Renewable Energy, Elsevier, vol. 61(C), pages 57-68.
    14. Olaf Erenstein & William Thorpe, 2010. "Crop–livestock interactions along agro-ecological gradients: a meso-level analysis in the Indo-Gangetic Plains, India," Environment, Development and Sustainability: A Multidisciplinary Approach to the Theory and Practice of Sustainable Development, Springer, vol. 12(5), pages 669-689, October.
    15. Erenstein, Olaf & Thorpe, William, 2011. "Livelihoods and agro-ecological gradients: A meso-level analysis in the Indo-Gangetic Plains, India," Agricultural Systems, Elsevier, vol. 104(1), pages 42-53, January.
    16. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Jarosław Gocławski & Ewa Korzeniewska & Joanna Sekulska-Nalewajko & Paweł Kiełbasa & Tomasz Dróżdż, 2022. "Method of Biomass Discrimination for Fast Assessment of Calorific Value," Energies, MDPI, vol. 15(7), pages 1-23, March.
    2. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    3. Theo, Wai Lip & Lim, Jeng Shiun & Ho, Wai Shin & Hashim, Haslenda & Lee, Chew Tin, 2017. "Review of distributed generation (DG) system planning and optimisation techniques: Comparison of numerical and mathematical modelling methods," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 531-573.
    4. Yiyun Liu & Rui Zhao & Kuo-Jui Wu & Tao Huang & Anthony S. F. Chiu & Chenyi Cai, 2018. "A Hybrid of Multi-Objective Optimization and System Dynamics Simulation for Straw-to-Electricity Supply Chain Management under the Belt and Road Initiatives," Sustainability, MDPI, vol. 10(3), pages 1-17, March.
    5. Chiharu Hongo & Eisaku Tamura & I. G. A. A. Ambarawati & I. Made Anom Wijaya & A. A. A. Mirah Adi, 2017. "Evaluation of Potential for Ethanol Production from Rice Straw Using Satellite Data," Journal of Agricultural Science, Canadian Center of Science and Education, vol. 9(6), pages 1-22, May.
    6. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    7. Wang, Zhanwu & Wang, Zhenfeng & Tahir, Nadeem & Wang, Heng & Li, Jin & Xu, Guangyin, 2020. "Study of synergetic development in straw power supply chain: Straw price and government subsidy as incentive," Energy Policy, Elsevier, vol. 146(C).
    8. Renata Marks-Bielska & Stanisław Bielski & Anastasija Novikova & Kęstutis Romaneckas, 2019. "Straw Stocks as a Source of Renewable Energy. A Case Study of a District in Poland," Sustainability, MDPI, vol. 11(17), pages 1-18, August.
    9. Liu, Enhai & Liu, Shengyong, 2017. "Process optimization and study of biogas fermentation with a mixture of duck manure and straw," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 439-444.
    10. Jiqin Ren & Peixian Yu & Xiaohong Xu, 2019. "Straw Utilization in China—Status and Recommendations," Sustainability, MDPI, vol. 11(6), pages 1-17, March.
    11. Thanarat Pratumwan & Warunee Tia & Adisak Nathakaranakule & Somchart Soponronnarit, 2022. "Grid-connected Electricity Generation Potential from Energy Crops: A Case Study of Marginal Land in Thailand," International Journal of Energy Economics and Policy, Econjournals, vol. 12(1), pages 62-72.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Jaswinder, 2015. "Overview of electric power potential of surplus agricultural biomass from economic, social, environmental and technical perspective—A case study of Punjab," Renewable and Sustainable Energy Reviews, Elsevier, vol. 42(C), pages 286-297.
    2. Singh, Rhythm, 2018. "Energy sufficiency aspirations of India and the role of renewable resources: Scenarios for future," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P2), pages 2783-2795.
    3. Singh, Jaswinder, 2016. "A roadmap for production of sustainable, consistent and reliable electric power from agricultural biomass- An Indian perspective," Energy Policy, Elsevier, vol. 92(C), pages 246-254.
    4. Sansaniwal, S.K. & Rosen, M.A. & Tyagi, S.K., 2017. "Global challenges in the sustainable development of biomass gasification: An overview," Renewable and Sustainable Energy Reviews, Elsevier, vol. 80(C), pages 23-43.
    5. Lohan, Shiv Kumar & Jat, H.S. & Yadav, Arvind Kumar & Sidhu, H.S. & Jat, M.L. & Choudhary, Madhu & Peter, Jyotsna Kiran & Sharma, P.C., 2018. "Burning issues of paddy residue management in north-west states of India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 693-706.
    6. Gojiya, Anil & Deb, Dipankar & Iyer, Kannan K.R., 2019. "Feasibility study of power generation from agricultural residue in comparison with soil incorporation of residue," Renewable Energy, Elsevier, vol. 134(C), pages 416-425.
    7. Hiloidhari, Moonmoon & Das, Dhiman & Baruah, D.C., 2014. "Bioenergy potential from crop residue biomass in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 32(C), pages 504-512.
    8. Pode, Ramchandra, 2016. "Potential applications of rice husk ash waste from rice husk biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1468-1485.
    9. Shane, Agabu & Gheewala, Shabbir H. & Fungtammasan, Bundit & Silalertruksa, Thapat & Bonnet, Sébastien & Phiri, Seveliano, 2016. "Bioenergy resource assessment for Zambia," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 93-104.
    10. Algieri, Angelo & Andiloro, Serafina & Tamburino, Vincenzo & Zema, Demetrio Antonio, 2019. "The potential of agricultural residues for energy production in Calabria (Southern Italy)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 104(C), pages 1-14.
    11. Das, S. & Kashyap, D. & Kalita, P. & Kulkarni, V. & Itaya, Y., 2020. "Clean gaseous fuel application in diesel engine: A sustainable option for rural electrification in India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 117(C).
    12. Chakraborty, Abhishek & Biswal, Anima & Pandey, Varun & Shadab, Syed & Kalyandeep, K. & Murthy, C.S. & Seshasai, M.V.R. & Rao, P.V.N. & Jain, Niveta & Sehgal, V.K. & Kaushik, Nirmala & Singh, Sanjay &, 2022. "Developing a spatial information system of biomass potential from crop residues over India: A decision support for planning and establishment of biofuel/biomass power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    13. Luthra, Sunil & Kumar, Sanjay & Garg, Dixit & Haleem, Abid, 2015. "Barriers to renewable/sustainable energy technologies adoption: Indian perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 41(C), pages 762-776.
    14. Al-Hamamre, Zayed & Saidan, Motasem & Hararah, Muhanned & Rawajfeh, Khaled & Alkhasawneh, Hussam E. & Al-Shannag, Mohammad, 2017. "Wastes and biomass materials as sustainable-renewable energy resources for Jordan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 67(C), pages 295-314.
    15. Mohsen Jamali & Esmaeil Bakhshandeh & Mohammad Yaghoubi Khanghahi & Carmine Crecchio, 2021. "Metadata Analysis to Evaluate Environmental Impacts of Wheat Residues Burning on Soil Quality in Developing and Developed Countries," Sustainability, MDPI, vol. 13(11), pages 1-13, June.
    16. Brahma, Antara & Saikia, Kangkana & Hiloidhari, Moonmoon & Baruah, D.C., 2016. "GIS based planning of a biomethanation power plant in Assam, India," Renewable and Sustainable Energy Reviews, Elsevier, vol. 62(C), pages 596-608.
    17. Batidzirai, B. & Mignot, A.P.R. & Schakel, W.B. & Junginger, H.M. & Faaij, A.P.C., 2013. "Biomass torrefaction technology: Techno-economic status and future prospects," Energy, Elsevier, vol. 62(C), pages 196-214.
    18. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.
    19. Milhau, Antoine & Fallot, Abigail, 2013. "Assessing the potentials of agricultural residues for energy: What the CDM experience of India tells us about their availability," Energy Policy, Elsevier, vol. 58(C), pages 391-402.
    20. Yaliwal, V.S. & Banapurmath, N.R. & Gireesh, N.M. & Tewari, P.G., 2014. "Production and utilization of renewable and sustainable gaseous fuel for power generation applications: A review of literature," Renewable and Sustainable Energy Reviews, Elsevier, vol. 34(C), pages 608-627.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:60:y:2016:i:c:p:1140-1155. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.