IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v11y2018i11p3019-d180159.html
   My bibliography  Save this article

Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant

Author

Listed:
  • Josip Orović

    (Maritime Department, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia)

  • Vedran Mrzljak

    (Faculty of Engineering, University of Rijeka, Vukovarska 58, 51000 Rijeka, Rijeka)

  • Igor Poljak

    (Maritime Department, University of Zadar, Mihovila Pavlinovića 1, 23000 Zadar, Croatia)

Abstract

Air heaters are commonly used devices in steam power plants. In base-loaded conventional power plants, air heaters usually use flue gases for air heating. In this paper, the air heater from a marine steam propulsion plant is analyzed, using superheated steam as a heating medium. In a marine propulsion plant, flue gases from steam generator are not hot enough for the air heating process. In a wide range of steam system loads, the analyzed steam air heater has low energy power losses and high energy efficiencies, ranging from 98.41% to 99.90%. Exergy analysis of the steam air heater showed that exergy destruction is quite high, whereas exergy efficiency ranged between 46.34% and 67.14%. Air heater exergy destruction was the highest, whereas exergy efficiency was the lowest at the highest steam system loads, which was an unexpected occurrence because the highest loads can be expected in the majority of marine steam plant operations. The change in the ambient temperature significantly influences steam air heater exergy efficiency. An increase in the ambient temperature of 10 °C reduces analyzed air heater exergy efficiency by 4.5%, or more, on average.

Suggested Citation

  • Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3019-:d:180159
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/11/11/3019/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/11/11/3019/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Zisopoulos, Filippos K. & Moejes, Sanne N. & Rossier-Miranda, Francisco J. & van der Goot, Atze Jan & Boom, Remko M., 2015. "Exergetic comparison of food waste valorization in industrial bread production," Energy, Elsevier, vol. 82(C), pages 640-649.
    2. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    3. Kaushik, S.C. & Reddy, V. Siva & Tyagi, S.K., 2011. "Energy and exergy analyses of thermal power plants: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(4), pages 1857-1872, May.
    4. Ahmadi, Gholam Reza & Toghraie, Davood, 2016. "Energy and exergy analysis of Montazeri Steam Power Plant in Iran," Renewable and Sustainable Energy Reviews, Elsevier, vol. 56(C), pages 454-463.
    5. Menasria, Fouad & Zedairia, Merouane & Moummi, Abdelhafid, 2017. "Numerical study of thermohydraulic performance of solar air heater duct equipped with novel continuous rectangular baffles with high aspect ratio," Energy, Elsevier, vol. 133(C), pages 593-608.
    6. Jin, Dongxu & Zuo, Jianguo & Quan, Shenglin & Xu, Shiming & Gao, Hao, 2017. "Thermohydraulic performance of solar air heater with staggered multiple V-shaped ribs on the absorber plate," Energy, Elsevier, vol. 127(C), pages 68-77.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ali, Ramadan Hefny & Abdel Samee, Ahmed A. & Maghrabie, Hussein M., 2023. "Thermodynamic analysis of a cogeneration system in pulp and paper industry under singular and hybrid operating modes," Energy, Elsevier, vol. 263(PE).
    2. Vengadesan, Elumalai & Senthil, Ramalingam, 2020. "A review on recent developments in thermal performance enhancement methods of flat plate solar air collector," Renewable and Sustainable Energy Reviews, Elsevier, vol. 134(C).
    3. Singh Bisht, Vijay & Kumar Patil, Anil & Gupta, Anirudh, 2018. "Review and performance evaluation of roughened solar air heaters," Renewable and Sustainable Energy Reviews, Elsevier, vol. 81(P1), pages 954-977.
    4. Ximei Li & Jianmin Gao & Yaning Zhang & Yu Zhang & Qian Du & Shaohua Wu & Yukun Qin, 2020. "Energy, Exergy and Economic Analyses of a Combined Heating and Power System with Turbine-Driving Fans and Pumps in Northeast China," Energies, MDPI, vol. 13(4), pages 1-22, February.
    5. Ibrahim, Thamir K. & Mohammed, Mohammed Kamil & Awad, Omar I. & Abdalla, Ahmed N. & Basrawi, Firdaus & Mohammed, Marwah N. & Najafi, G. & Mamat, Rizalman, 2018. "A comprehensive review on the exergy analysis of combined cycle power plants," Renewable and Sustainable Energy Reviews, Elsevier, vol. 90(C), pages 835-850.
    6. Jafaryani Jokandan, Majid & Aghbashlo, Mortaza & Mohtasebi, Seyed Saeid, 2015. "Comprehensive exergy analysis of an industrial-scale yogurt production plant," Energy, Elsevier, vol. 93(P2), pages 1832-1851.
    7. Fangyi Li & Zhaoyang Ye & Xilin Xiao & Dawei Ma, 2019. "Environmental Benefits of Stock Evolution of Coal-Fired Power Generators in China," Sustainability, MDPI, vol. 11(19), pages 1-17, October.
    8. Kumar, Rajneesh & Kumar, Anoop & Goel, Varun, 2019. "Performance improvement and development of correlation for friction factor and heat transfer using computational fluid dynamics for ribbed triangular duct solar air heater," Renewable Energy, Elsevier, vol. 131(C), pages 788-799.
    9. Francis Chinweuba Eboh & Peter Ahlström & Tobias Richards, 2017. "Exergy Analysis of Solid Fuel-Fired Heat and Power Plants: A Review," Energies, MDPI, vol. 10(2), pages 1-29, February.
    10. Arriola-Medellín, Alejandro & Manzanares-Papayanopoulos, Emilio & Romo-Millares, César, 2014. "Diagnosis and redesign of power plants using combined Pinch and Exergy Analysis," Energy, Elsevier, vol. 72(C), pages 643-651.
    11. Maurya, Om Kapoor & Ekka, Jasinta Poonam & Kumar, Dhananjay & Dewangan, Disha & Singh, Adarsh, 2023. "Experimental and numerical methods for the performance analysis of a tubular three-pass solar air heater," Energy, Elsevier, vol. 283(C).
    12. Rajabi, Mahsa & Mehrpooya, Mehdi & Haibo, Zhao & Huang, Zhen, 2019. "Chemical looping technology in CHP (combined heat and power) and CCHP (combined cooling heating and power) systems: A critical review," Applied Energy, Elsevier, vol. 253(C), pages 1-1.
    13. Gao, Jintong & Zhang, Qi & Wang, Xiaozhuang & Song, Dayong & Liu, Weiqi & Liu, Wenchao, 2018. "Exergy and exergoeconomic analyses with modeling for CO2 allocation of coal-fired CHP plants," Energy, Elsevier, vol. 152(C), pages 562-575.
    14. Guo, Hongqiang & Hou, Daizheng & Du, Shangye & Zhao, Ling & Wu, Jian & Yan, Ning, 2020. "A driving pattern recognition-based energy management for plug-in hybrid electric bus to counter the noise of stochastic vehicle mass," Energy, Elsevier, vol. 198(C).
    15. Chauhan, Shivendra Singh & Khanam, Shabina, 2019. "Enhancement of efficiency for steam cycle of thermal power plants using process integration," Energy, Elsevier, vol. 173(C), pages 364-373.
    16. Aleksander Banasik & Argyris Kanellopoulos & G. D. H. Claassen & Jacqueline M. Bloemhof-Ruwaard & Jack G. A. J. Vorst, 2017. "Assessing alternative production options for eco-efficient food supply chains using multi-objective optimization," Annals of Operations Research, Springer, vol. 250(2), pages 341-362, March.
    17. C, Alimonti & P, Conti & E, Soldo, 2019. "A comprehensive exergy evaluation of a deep borehole heat exchanger coupled with a ORC plant: the case study of Campi Flegrei," Energy, Elsevier, vol. 189(C).
    18. Singh, Pushpendra & Meena, Nand K. & Yang, Jin & Vega-Fuentes, Eduardo & Bishnoi, Shree Krishna, 2020. "Multi-criteria decision making monarch butterfly optimization for optimal distributed energy resources mix in distribution networks," Applied Energy, Elsevier, vol. 278(C).
    19. Leonzio, Grazia, 2017. "Solar systems integrated with absorption heat pumps and thermal energy storages: state of art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 70(C), pages 492-505.
    20. Jonynas, Rolandas & Puida, Egidijus & Poškas, Robertas & Paukštaitis, Linas & Jouhara, Hussam & Gudzinskas, Juozas & Miliauskas, Gintautas & Lukoševičius, Valdas, 2020. "Renewables for district heating: The case of Lithuania," Energy, Elsevier, vol. 211(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:11:y:2018:i:11:p:3019-:d:180159. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.