IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v145y2018icp614-625.html
   My bibliography  Save this article

Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process

Author

Listed:
  • Dogbe, Eunice Sefakor
  • Mandegari, Mohsen A.
  • Görgens, Johann F.

Abstract

The sugar industry is the second largest agro-industry in the world, with more than 80% of sugar produced from sugarcane. Sugar mills are energy-intensive and historically not designed to be energy efficient, even though they may be energy self-sufficient. This study presents a comprehensive exergy analysis of cane sugar production processes to identify inefficient components for improvement. The exergy analysis was based on rigorous mass and energy balances calculated from an Aspen Plus® simulation of a typical 250 ton per hour sugar mill, along with an appropriate exergy methodology. The exergy analysis of the cogeneration system, which has been found to be the principal sugar mill exergy destruction unit, is conducted separately and will be presented in a subsequent paper. The overall sugar mill irreversibility and functional exergy efficiency were 217.3 MJ per ton of cane crushed and 9.7%, respectively. The evaporation unit generated the highest irreversibility of 100 MJ/ton of cane, while crystallization unit had the lowest functional exergy efficiency of 9.6% and the highest potential for improvement of 47.0 MJ/ton of cane. The exergetic performance of the mill may be improved by adopting a single stage crystallization with an integrated biorefinery.

Suggested Citation

  • Dogbe, Eunice Sefakor & Mandegari, Mohsen A. & Görgens, Johann F., 2018. "Exergetic diagnosis and performance analysis of a typical sugar mill based on Aspen Plus® simulation of the process," Energy, Elsevier, vol. 145(C), pages 614-625.
  • Handle: RePEc:eee:energy:v:145:y:2018:i:c:p:614-625
    DOI: 10.1016/j.energy.2017.12.134
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217321771
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.12.134?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Costa, Márcio Macedo & Schaeffer, Roberto & Worrell, Ernst, 2001. "Exergy accounting of energy and materials flows in steel production systems," Energy, Elsevier, vol. 26(4), pages 363-384.
    2. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    3. Tekin, Taner & Bayramoǧlu, Mahmut, 2001. "Exergy and structural analysis of raw juice production and steam-power units of a sugar production plant," Energy, Elsevier, vol. 26(3), pages 287-297.
    4. Ojeda, Karina & Sánchez, Eduardo & Kafarov, Viatcheslav, 2011. "Sustainable ethanol production from lignocellulosic biomass – Application of exergy analysis," Energy, Elsevier, vol. 36(4), pages 2119-2128.
    5. Sogut, Z. & Ilten, N. & Oktay, Z., 2010. "Energetic and exergetic performance evaluation of the quadruple-effect evaporator unit in tomato paste production," Energy, Elsevier, vol. 35(9), pages 3821-3826.
    6. Hevert, Herbert W. & Hevert, Stephen C., 1980. "Second law analysis: An alternative indicator of system efficiency," Energy, Elsevier, vol. 5(8), pages 865-873.
    7. Hosseini, Seyed Sina & Aghbashlo, Mortaza & Tabatabaei, Meisam & Younesi, Habibollah & Najafpour, Ghasem, 2015. "Exergy analysis of biohydrogen production from various carbon sources via anaerobic photosynthetic bacteria (Rhodospirillum rubrum)," Energy, Elsevier, vol. 93(P1), pages 730-739.
    8. Dowlati, Majid & Aghbashlo, Mortaza & Mojarab Soufiyan, Mohamad, 2017. "Exergetic performance analysis of an ice-cream manufacturing plant: A comprehensive survey," Energy, Elsevier, vol. 123(C), pages 445-459.
    9. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    10. Ensinas, A.V. & Modesto, M. & Nebra, S.A. & Serra, L., 2009. "Reduction of irreversibility generation in sugar and ethanol production from sugarcane," Energy, Elsevier, vol. 34(5), pages 680-688.
    11. Wang, Zhe & Fan, Weiyu & Zhang, Guangqing & Dong, Shuang, 2016. "Exergy analysis of methane cracking thermally coupled with chemical looping combustion for hydrogen production," Applied Energy, Elsevier, vol. 168(C), pages 1-12.
    12. Aghbashlo, Mortaza & Tabatabaei, Meisam & Karimi, Keikhosro, 2016. "Exergy-based sustainability assessment of ethanol production via Mucor indicus from fructose, glucose, sucrose, and molasses," Energy, Elsevier, vol. 98(C), pages 240-252.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Chung, Millicent Rosette Wan Yi & Tan, Inn Shi & Foo, Henry Chee Yew & Lam, Man Kee, 2022. "Exergy analysis of a biorefinery process for co-production of third-generation L-lactic acid and electricity from Eucheuma denticulatum residues," Energy, Elsevier, vol. 242(C).
    2. Mkwananzi, Thobeka & Mandegari, Mohsen & Görgens, Johann F., 2019. "Disturbance modelling through steady-state value deviations: The determination of suitable energy indicators and parameters for energy consumption monitoring in a typical sugar mill," Energy, Elsevier, vol. 176(C), pages 211-223.
    3. Padi, Richard Kingsley & Douglas, Sean & Murphy, Fionnuala, 2023. "Techno-economic potentials of integrating decentralised biomethane production systems into existing natural gas grids," Energy, Elsevier, vol. 283(C).
    4. Mo, Qianci & Zhu, Xishan & Deng, Chenquan & Cen, Shuhai & Ye, Haibo & Wang, Chunqiang & Lu, Wei & Chen, Xiaojun & Lin, Xingsu, 2023. "Analysis on influencing factors and improvement of thermal efficiency of bagasse boilers based on performance test data," Energy, Elsevier, vol. 271(C).
    5. Singh, Gurjeet & Tyagi, V.V. & Singh, P.J. & Pandey, A.K., 2020. "Estimation of thermodynamic characteristics for comprehensive dairy food processing plant: An energetic and exergetic approach," Energy, Elsevier, vol. 194(C).
    6. Tirthankar Mukherjee & Eric Trably & Prasad Kaparaju, 2023. "Critical Assessment of Hydrogen and Methane Production from 1G and 2G Sugarcane Processing Wastes Using One-Stage and Two-Stage Anaerobic Digestion," Energies, MDPI, vol. 16(13), pages 1-22, June.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Singh, Gurjeet & Singh, P.J. & Tyagi, V.V. & Barnwal, P. & Pandey, A.K., 2019. "Exergy and thermo-economic analysis of ghee production plant in dairy industry," Energy, Elsevier, vol. 167(C), pages 602-618.
    2. Fan, Feilong & Huang, Wentao & Tai, Nengling & Zheng, Xiaodong & Hu, Yan & Ma, Zhoujun, 2018. "A conditional depreciation balancing strategy for the equitable operation of extended hybrid energy storage systems," Applied Energy, Elsevier, vol. 228(C), pages 1937-1952.
    3. Hosseinipour, Sayed Amir & Mehrpooya, Mehdi, 2019. "Comparison of the biogas upgrading methods as a transportation fuel," Renewable Energy, Elsevier, vol. 130(C), pages 641-655.
    4. Wang, Bin & Ma, Guangliang & Xu, Dan & Zhang, Le & Zhou, Jiahui, 2018. "Switching sliding-mode control strategy based on multi-type restrictive condition for voltage control of buck converter in auxiliary energy source," Applied Energy, Elsevier, vol. 228(C), pages 1373-1384.
    5. Mirhosseini, Mojtaba & Rezania, Alireza & Rosendahl, Lasse, 2019. "Harvesting waste heat from cement kiln shell by thermoelectric system," Energy, Elsevier, vol. 168(C), pages 358-369.
    6. de Rubeis, Tullio & Nardi, Iole & Ambrosini, Dario & Paoletti, Domenica, 2018. "Is a self-sufficient building energy efficient? Lesson learned from a case study in Mediterranean climate," Applied Energy, Elsevier, vol. 218(C), pages 131-145.
    7. Aghbashlo, Mortaza & Mandegari, Mohsen & Tabatabaei, Meisam & Farzad, Somayeh & Mojarab Soufiyan, Mohamad & Görgens, Johann F., 2018. "Exergy analysis of a lignocellulosic-based biorefinery annexed to a sugarcane mill for simultaneous lactic acid and electricity production," Energy, Elsevier, vol. 149(C), pages 623-638.
    8. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 2: Mainstream and downstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1392-1407.
    9. Daniel Hoehn & María Margallo & Jara Laso & Ana Fernández-Ríos & Israel Ruiz-Salmón & Rubén Aldaco, 2022. "Energy Systems in the Food Supply Chain and in the Food Loss and Waste Valorization Processes: A Systematic Review," Energies, MDPI, vol. 15(6), pages 1-15, March.
    10. Dias, Marina O.S. & Junqueira, Tassia L. & Jesus, Charles D.F. & Rossell, Carlos E.V. & Maciel Filho, Rubens & Bonomi, Antonio, 2012. "Improving second generation ethanol production through optimization of first generation production process from sugarcane," Energy, Elsevier, vol. 43(1), pages 246-252.
    11. Zhang, Shuang & Zhao, Tao & Xie, Bai-Chen, 2018. "What is the optimal power generation mix of China? An empirical analysis using portfolio theory," Applied Energy, Elsevier, vol. 229(C), pages 522-536.
    12. Mahdis sadat Jalaee & Alireza Shakibaei & Amin GhasemiNejad & Sayyed Abdolmajid Jalaee & Reza Derakhshani, 2021. "A Novel Computational Intelligence Approach for Coal Consumption Forecasting in Iran," Sustainability, MDPI, vol. 13(14), pages 1-16, July.
    13. Wu, Junnian & Wang, Ruiqi & Pu, Guangying & Qi, Hang, 2016. "Integrated assessment of exergy, energy and carbon dioxide emissions in an iron and steel industrial network," Applied Energy, Elsevier, vol. 183(C), pages 430-444.
    14. Natasa Nord & Yiyu Ding & Ola Skrautvol & Stian Fossmo Eliassen, 2021. "Energy Pathways for Future Norwegian Residential Building Areas," Energies, MDPI, vol. 14(4), pages 1-21, February.
    15. Josip Orović & Vedran Mrzljak & Igor Poljak, 2018. "Efficiency and Losses Analysis of Steam Air Heater from Marine Steam Propulsion Plant," Energies, MDPI, vol. 11(11), pages 1-18, November.
    16. Chen, Lingen & Yang, Bo & Feng, Huijun & Ge, Yanlin & Xia, Shaojun, 2020. "Performance optimization of an open simple-cycle gas turbine combined cooling, heating and power plant driven by basic oxygen furnace gas in China's steelmaking plants," Energy, Elsevier, vol. 203(C).
    17. Hafiz, Faeza & Rodrigo de Queiroz, Anderson & Fajri, Poria & Husain, Iqbal, 2019. "Energy management and optimal storage sizing for a shared community: A multi-stage stochastic programming approach," Applied Energy, Elsevier, vol. 236(C), pages 42-54.
    18. Soltanian, Salman & Kalogirou, Soteris A. & Ranjbari, Meisam & Amiri, Hamid & Mahian, Omid & Khoshnevisan, Benyamin & Jafary, Tahereh & Nizami, Abdul-Sattar & Gupta, Vijai Kumar & Aghaei, Siavash & Pe, 2022. "Exergetic sustainability analysis of municipal solid waste treatment systems: A systematic critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    19. Dias, W.P.S. & Pooliyadda, S.P., 2004. "Quality based energy contents and carbon coefficients for building materials: A systems approach," Energy, Elsevier, vol. 29(4), pages 561-580.
    20. Karakaya, Ahmet & Özilgen, Mustafa, 2011. "Energy utilization and carbon dioxide emission in the fresh, paste, whole-peeled, diced, and juiced tomato production processes," Energy, Elsevier, vol. 36(8), pages 5101-5110.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:145:y:2018:i:c:p:614-625. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.