IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v52y2013icp210-221.html
   My bibliography  Save this article

Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants

Author

Listed:
  • Weißbach, D.
  • Ruprecht, G.
  • Huke, A.
  • Czerski, K.
  • Gottlieb, S.
  • Hussein, A.

Abstract

The energy returned on invested, EROI, has been evaluated for typical power plants representing wind energy, photovoltaics, solar thermal, hydro, natural gas, biogas, coal and nuclear power. The strict exergy concept with no “primary energy weighting”, updated material databases, and updated technical procedures make it possible to directly compare the overall efficiency of those power plants on a uniform mathematical and physical basis. Pump storage systems, needed for solar and wind energy, have been included in the EROI so that the efficiency can be compared with an “unbuffered” scenario. The results show that nuclear, hydro, coal, and natural gas power systems (in this order) are one order of magnitude more effective than photovoltaics and wind power.

Suggested Citation

  • Weißbach, D. & Ruprecht, G. & Huke, A. & Czerski, K. & Gottlieb, S. & Hussein, A., 2013. "Energy intensities, EROIs (energy returned on invested), and energy payback times of electricity generating power plants," Energy, Elsevier, vol. 52(C), pages 210-221.
  • Handle: RePEc:eee:energy:v:52:y:2013:i:c:p:210-221
    DOI: 10.1016/j.energy.2013.01.029
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544213000492
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2013.01.029?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Tyner, Gene & Costanza, Robert & Fowler, Richard G., 1988. "The net-energy yield of nuclear power," Energy, Elsevier, vol. 13(1), pages 73-81.
    2. Cleveland, Cutler J., 2005. "Net energy from the extraction of oil and gas in the United States," Energy, Elsevier, vol. 30(5), pages 769-782.
    3. Lenzen, Manfred & Munksgaard, Jesper, 2002. "Energy and CO2 life-cycle analyses of wind turbines—review and applications," Renewable Energy, Elsevier, vol. 26(3), pages 339-362.
    4. Ayres, Robert U. & Ayres, Leslie W. & Martinás, Katalin, 1998. "Exergy, waste accounting, and life-cycle analysis," Energy, Elsevier, vol. 23(5), pages 355-363.
    5. Raugei, Marco & Fullana-i-Palmer, Pere & Fthenakis, Vasilis, 2012. "The energy return on energy investment (EROI) of photovoltaics: Methodology and comparisons with fossil fuel life cycles," Energy Policy, Elsevier, vol. 45(C), pages 576-582.
    6. Gagnon, Luc & Belanger, Camille & Uchiyama, Yohji, 2002. "Life-cycle assessment of electricity generation options: The status of research in year 2001," Energy Policy, Elsevier, vol. 30(14), pages 1267-1278, November.
    7. Battisti, Riccardo & Corrado, Annalisa, 2005. "Evaluation of technical improvements of photovoltaic systems through life cycle assessment methodology," Energy, Elsevier, vol. 30(7), pages 952-967.
    8. Giampietro, Mario & Sorman, Alevgul H., 2012. "Are energy statistics useful for making energy scenarios?," Energy, Elsevier, vol. 37(1), pages 5-17.
    9. Cleveland, Cutler J., 1992. "Energy quality and energy surplus in the extraction of fossil fuels in the U.S," Ecological Economics, Elsevier, vol. 6(2), pages 139-162, October.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Atlason, R.S. & Unnthorsson, R., 2013. "Hot water production improves the energy return on investment of geothermal power plants," Energy, Elsevier, vol. 51(C), pages 273-280.
    2. Hannes Kunz & Nathan John Hagens & Stephen B. Balogh, 2014. "The Influence of Output Variability from Renewable Electricity Generation on Net Energy Calculations," Energies, MDPI, vol. 7(1), pages 1-23, January.
    3. Kubiszewski, Ida & Cleveland, Cutler J. & Endres, Peter K., 2010. "Meta-analysis of net energy return for wind power systems," Renewable Energy, Elsevier, vol. 35(1), pages 218-225.
    4. Fizaine, Florian & Court, Victor, 2015. "Renewable electricity producing technologies and metal depletion: A sensitivity analysis using the EROI," Ecological Economics, Elsevier, vol. 110(C), pages 106-118.
    5. Atlason, R.S. & Unnthorsson, R., 2014. "Energy return on investment of hydroelectric power generation calculated using a standardised methodology," Renewable Energy, Elsevier, vol. 66(C), pages 364-370.
    6. Victor Court & Florian Fizaine, 2014. "Energy transition towards renewables and metal depletion: an approach through the EROI concept," Post-Print hal-01411803, HAL.
    7. Gately, Mark, 2007. "The EROI of U.S. offshore energy extraction: A net energy analysis of the Gulf of Mexico," Ecological Economics, Elsevier, vol. 63(2-3), pages 355-364, August.
    8. Adam R. Brandt, 2011. "Oil Depletion and the Energy Efficiency of Oil Production: The Case of California," Sustainability, MDPI, vol. 3(10), pages 1-22, October.
    9. Roma, Antonio & Pirino, Davide, 2009. "The extraction of natural resources: The role of thermodynamic efficiency," Ecological Economics, Elsevier, vol. 68(10), pages 2594-2606, August.
    10. Zhaoyang Kong & Xiucheng Dong & Bo Xu & Rui Li & Qiang Yin & Cuifang Song, 2015. "EROI Analysis for Direct Coal Liquefaction without and with CCS: The Case of the Shenhua DCL Project in China," Energies, MDPI, vol. 8(2), pages 1-22, January.
    11. Dupont, Elise & Koppelaar, Rembrandt & Jeanmart, Hervé, 2018. "Global available wind energy with physical and energy return on investment constraints," Applied Energy, Elsevier, vol. 209(C), pages 322-338.
    12. Lina I. Brand-Correa & Paul E. Brockway & Claire L. Copeland & Timothy J. Foxon & Anne Owen & Peter G. Taylor, 2017. "Developing an Input-Output Based Method to Estimate a National-Level Energy Return on Investment (EROI)," Energies, MDPI, vol. 10(4), pages 1-21, April.
    13. Macías, Arturo & Matilla-García, Mariano, 2015. "Net energy analysis in a Ramsey–Hotelling growth model," Energy Policy, Elsevier, vol. 86(C), pages 562-573.
    14. Ardente, Fulvio & Beccali, Marco & Cellura, Maurizio & Lo Brano, Valerio, 2008. "Energy performances and life cycle assessment of an Italian wind farm," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(1), pages 200-217, January.
    15. Alexandre Poisson & Charles A. S. Hall, 2013. "Time Series EROI for Canadian Oil and Gas," Energies, MDPI, vol. 6(11), pages 1-20, November.
    16. Harmsen, J.H.M. & Roes, A.L. & Patel, M.K., 2013. "The impact of copper scarcity on the efficiency of 2050 global renewable energy scenarios," Energy, Elsevier, vol. 50(C), pages 62-73.
    17. Brandt, Adam R. & Yeskoo, Tim & Vafi, Kourosh, 2015. "Net energy analysis of Bakken crude oil production using a well-level engineering-based model," Energy, Elsevier, vol. 93(P2), pages 2191-2198.
    18. Antonio Roma & Davide Pirino, 2008. "A Theoretical Model for the Extraction and Refinement of Natural Resources," Department of Economics University of Siena 537, Department of Economics, University of Siena.
    19. Bhandari, Khagendra P. & Collier, Jennifer M. & Ellingson, Randy J. & Apul, Defne S., 2015. "Energy payback time (EPBT) and energy return on energy invested (EROI) of solar photovoltaic systems: A systematic review and meta-analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 47(C), pages 133-141.
    20. Amor, Mourad Ben & Lesage, Pascal & Pineau, Pierre-Olivier & Samson, Réjean, 2010. "Can distributed generation offer substantial benefits in a Northeastern American context? A case study of small-scale renewable technologies using a life cycle methodology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2885-2895, December.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:52:y:2013:i:c:p:210-221. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.