IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v35y2010i1p410-422.html
   My bibliography  Save this article

A new thermoeconomic methodology for energy systems

Author

Listed:
  • Kim, D.J.

Abstract

Thermoeconomics, or exergoeconomics, can be classified into the three fields: cost allocation, cost optimization, and cost analysis. In this study, a new thermoeconomic methodology for energy systems is proposed in the three fields. The proposed methodology is very simple and clear. That is, the number of the proposed equation is only one in each field, and it is developed with a wonergy newly introduced in this paper. The wonergy is defined as an energy that can equally evaluate the worth of each product. Any energy, including enthalpy or exergy, can be applied to the wonergy and be evaluated by this equation. In order to confirm its validity, the CGAM problem and various cogenerations were analyzed. Seven sorts of energy, including enthalpy and exergy, were applied for cost allocation. Enthalpy, exergy, and profit were applied for cost optimization. Enthalpy and exergy were applied for cost analysis. Exergy is generally recognized as the most reasonable criterion in exergoeconomics. By the proposed methodology, however, exergy is the most reasonable in cost allocation and cost analysis, and all of exergy, enthalpy, and profit are reasonable in cost optimization. Therefore, we conclude that various forms of wonergy should be applied to the analysis of thermoeconomics.

Suggested Citation

  • Kim, D.J., 2010. "A new thermoeconomic methodology for energy systems," Energy, Elsevier, vol. 35(1), pages 410-422.
  • Handle: RePEc:eee:energy:v:35:y:2010:i:1:p:410-422
    DOI: 10.1016/j.energy.2009.10.008
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544209004411
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2009.10.008?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Lazzaretto, Andrea & Tsatsaronis, George, 2006. "SPECO: A systematic and general methodology for calculating efficiencies and costs in thermal systems," Energy, Elsevier, vol. 31(8), pages 1257-1289.
    2. von Spakovsky, Michael R., 1994. "Application of engineering functional analysis to the analysis and optimization of the CGAM problem," Energy, Elsevier, vol. 19(3), pages 343-364.
    3. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    4. Valero, Antonio & Lozano, Miguel A. & Serra, Luis & Tsatsaronis, George & Pisa, Javier & Frangopoulos, Christos & von Spakovsky, Michael R., 1994. "CGAM problem: Definition and conventional solution," Energy, Elsevier, vol. 19(3), pages 279-286.
    5. Frangopoulos, Christos A., 1987. "Thermo-economic functional analysis and optimization," Energy, Elsevier, vol. 12(7), pages 563-571.
    6. Lozano, M.A. & Valero, A., 1993. "Theory of the exergetic cost," Energy, Elsevier, vol. 18(9), pages 939-960.
    7. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    8. Kim, Si-Moon & Oh†, Si-Doek & Kwon, Yong-Ho & Kwak, Ho-Young, 1998. "Exergoeconomic analysis of thermal systems," Energy, Elsevier, vol. 23(5), pages 393-406.
    9. Frangopoulos, Christos A., 1994. "Application of the thermoeconomic functional approach to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 323-342.
    10. Valero, A. & Lozano, M.A. & Serra, L. & Torres, C., 1994. "Application of the exergetic cost theory to the CGAM problem," Energy, Elsevier, vol. 19(3), pages 365-381.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    2. Querol, E. & Gonzalez-Regueral, B. & Ramos, A. & Perez-Benedito, J.L., 2011. "Novel application for exergy and thermoeconomic analysis of processes simulated with Aspen Plus®," Energy, Elsevier, vol. 36(2), pages 964-974.
    3. Ye, Xuemin & Li, Chunxi, 2013. "A novel evaluation of heat-electricity cost allocation in cogenerations based on entropy change method," Energy Policy, Elsevier, vol. 60(C), pages 290-295.
    4. Beretta, Gian Paolo & Iora, Paolo & Ghoniem, Ahmed F., 2012. "Novel approach for fair allocation of primary energy consumption among cogenerated energy-intensive products based on the actual local area production scenario," Energy, Elsevier, vol. 44(1), pages 1107-1120.
    5. Taner, Tolga & Sivrioglu, Mecit, 2017. "A techno-economic & cost analysis of a turbine power plant: A case study for sugar plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 722-730.
    6. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    7. Sangi, Roozbeh & Martín, Paula Martínez & Müller, Dirk, 2016. "Thermoeconomic analysis of a building heating system," Energy, Elsevier, vol. 111(C), pages 351-363.
    8. Taner, Tolga & Sivrioglu, Mecit, 2015. "Energy–exergy analysis and optimisation of a model sugar factory in Turkey," Energy, Elsevier, vol. 93(P1), pages 641-654.
    9. Jegadheeswaran, S. & Pohekar, S.D. & Kousksou, T., 2010. "Exergy based performance evaluation of latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(9), pages 2580-2595, December.
    10. Coronado, Christian Rodriguez & Tuna, Celso Eduardo & Zanzi, Rolando & Vane, Lucas F. & Silveira, José Luz, 2014. "Development of a thermoeconomic methodology for optimizing biodiesel production. Part II: Manufacture exergetic cost and biodiesel production cost incorporating carbon credits, a Brazilian case study," Renewable and Sustainable Energy Reviews, Elsevier, vol. 29(C), pages 565-572.
    11. Karaali, Rabi & Öztürk, İlhan Tekin, 2015. "Thermoeconomic optimization of gas turbine cogeneration plants," Energy, Elsevier, vol. 80(C), pages 474-485.
    12. Akbulut, Ugur & Utlu, Zafer & Kincay, Olcay, 2016. "Exergy, exergoenvironmental and exergoeconomic evaluation of a heat pump-integrated wall heating system," Energy, Elsevier, vol. 107(C), pages 502-522.
    13. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    14. Sanaye, Sepehr & Fardad, Abbasali & Mostakhdemi, Masoud, 2011. "Thermoeconomic optimization of an ice thermal storage system for gas turbine inlet cooling," Energy, Elsevier, vol. 36(2), pages 1057-1067.
    15. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Abusoglu, Aysegul & Kanoglu, Mehmet, 2009. "Exergoeconomic analysis and optimization of combined heat and power production: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2295-2308, December.
    2. Rosseto de Faria, Pedro & Aiolfi Barone, Marcelo & Guedes dos Santos, Rodrigo & Santos, José Joaquim C.S., 2023. "The environment as a thermoeconomic diagram device for the systematic and automatic waste and environmental cost internalization in thermal systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Lamas, Wendell de Queiroz, 2013. "Fuzzy thermoeconomic optimisation applied to a small waste water treatment plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 19(C), pages 214-219.
    4. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Cold utilization systems of LNG: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1171-1188.
    5. dos Santos, Rodrigo G. & de Faria, Pedro R. & Santos, José J.C.S. & da Silva, Julio A.M. & Flórez-Orrego, Daniel, 2016. "Thermoeconomic modeling for CO2 allocation in steam and gas turbine cogeneration systems," Energy, Elsevier, vol. 117(P2), pages 590-603.
    6. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Comparative exergoeconomics of power utilities: Air-cooled gas turbine cycle and combined cycle configurations," Energy, Elsevier, vol. 139(C), pages 42-51.
    7. Haydargil, Derya & Abuşoğlu, Ayşegül, 2018. "A comparative thermoeconomic cost accounting analysis and evaluation of biogas engine-powered cogeneration," Energy, Elsevier, vol. 159(C), pages 97-114.
    8. Lazzaretto, A. & Toffolo, A., 2004. "Energy, economy and environment as objectives in multi-criterion optimization of thermal systems design," Energy, Elsevier, vol. 29(8), pages 1139-1157.
    9. Bargos, Fabiano Fernandes & Lamas, Wendell de Queiróz & Bilato, Gabriel Adam, 2018. "Computational tools and operational research for optimal design of co-generation systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 507-516.
    10. Ligang Wang & Zhiping Yang & Shivom Sharma & Alberto Mian & Tzu-En Lin & George Tsatsaronis & François Maréchal & Yongping Yang, 2018. "A Review of Evaluation, Optimization and Synthesis of Energy Systems: Methodology and Application to Thermal Power Plants," Energies, MDPI, vol. 12(1), pages 1-53, December.
    11. Pires, Thiago S. & Cruz, Manuel E. & Colaço, Marcelo J., 2013. "Response surface method applied to the thermoeconomic optimization of a complex cogeneration system modeled in a process simulator," Energy, Elsevier, vol. 52(C), pages 44-54.
    12. Mazur, V., 2009. "Fuzzy thermoeconomic optimization of energy-transforming systems," Applied Energy, Elsevier, vol. 84(7-8), pages 749-762, July.
    13. Bagdanavicius, Audrius & Jenkins, Nick & Hammond, Geoffrey P., 2012. "Assessment of community energy supply systems using energy, exergy and exergoeconomic analysis," Energy, Elsevier, vol. 45(1), pages 247-255.
    14. Sahu, Mithilesh Kumar & Sanjay,, 2017. "Thermoeconomic investigation of power utilities: Intercooled recuperated gas turbine cycle featuring cooled turbine blades," Energy, Elsevier, vol. 138(C), pages 490-499.
    15. Toffolo, A. & Lazzaretto, A., 2002. "Evolutionary algorithms for multi-objective energetic and economic optimization in thermal system design," Energy, Elsevier, vol. 27(6), pages 549-567.
    16. Kler, Aleksandr M. & Potanina, Yulia M. & Marinchenko, Andrey Y., 2020. "Co-optimization of thermal power plant flowchart, thermodynamic cycle parameters, and design parameters of components," Energy, Elsevier, vol. 193(C).
    17. Alkan, Mehmet Ali & Keçebaş, Ali & Yamankaradeniz, Nurettin, 2013. "Exergoeconomic analysis of a district heating system for geothermal energy using specific exergy cost method," Energy, Elsevier, vol. 60(C), pages 426-434.
    18. Kanbur, Baris Burak & Xiang, Liming & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Thermoeconomic assessment of a micro cogeneration system with LNG cold utilization," Energy, Elsevier, vol. 129(C), pages 171-184.
    19. Ahmadi, Pouria & Dincer, Ibrahim, 2010. "Exergoenvironmental analysis and optimization of a cogeneration plant system using Multimodal Genetic Algorithm (MGA)," Energy, Elsevier, vol. 35(12), pages 5161-5172.
    20. Zare, V. & Mahmoudi, S.M.S. & Yari, M. & Amidpour, M., 2012. "Thermoeconomic analysis and optimization of an ammonia–water power/cooling cogeneration cycle," Energy, Elsevier, vol. 47(1), pages 271-283.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:35:y:2010:i:1:p:410-422. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.