IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v199y2024ics1364032124002454.html
   My bibliography  Save this article

Electrification of distillation for decarbonization: An overview and perspective

Author

Listed:
  • Cui, Chengtian
  • Qi, Meng
  • Zhang, Xiaodong
  • Sun, Jinsheng
  • Li, Qing
  • Kiss, Anton A.
  • Wong, David Shan-Hill
  • Masuku, Cornelius M.
  • Lee, Moonyong

Abstract

Distillation remains the leading and most frequently adopted technique for the separation and purification of condensable mixtures in numerous industries. However, the inherently poor thermal efficiency of distillation requires a large amount of thermal energy, making it the chief factor in total process energy usage and a significant emitter of carbon dioxide due to the combustion of fossil fuels. To address this issue, electrification has arisen as a popular approach to reduce carbon emissions in different processes by primarily replacing the energy source with electricity derived from renewable energy resources. This review is designed to thoroughly explore the electrification concept in decarbonizing distillation and present a detailed analysis and summary of the cutting-edge technologies used in various distillation operations. The focus is on creating electrified distillation processes and their associated utility systems, making use of a range of power-to-heat and intensification strategies, to achieve simultaneous carbon reduction and energy savings. With the increasing variety of operating environments that incorporate renewable power, this review additionally encompasses the control and operation aspects to ensure efficient management of electrified distillation processes. To further delve into the advantages of incorporating electrification into distillation, this work proposes future directions from the viewpoints of technological advancement, design optimization, operation, and real-time scheduling of electrified distillation processes. Furthermore, this review highlights the enormous potential of electrification in dramatically lowering carbon emissions and promoting sustainable practices in the distillation industry.

Suggested Citation

  • Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
  • Handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002454
    DOI: 10.1016/j.rser.2024.114522
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032124002454
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2024.114522?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Blahušiak, M. & Kiss, A.A. & Kersten, S.R.A. & Schuur, B., 2016. "Quick assessment of binary distillation efficiency using a heat engine perspective," Energy, Elsevier, vol. 116(P1), pages 20-31.
    3. Kim, Jin-Kuk, 2022. "Studies on the conceptual design of energy recovery and utility systems for electrified chemical processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    4. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    5. Qi, Meng & Park, Jinwoo & Lee, Inkyu & Moon, Il, 2022. "Liquid air as an emerging energy vector towards carbon neutrality: A multi-scale systems perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 159(C).
    6. David S. Sholl & Ryan P. Lively, 2016. "Seven chemical separations to change the world," Nature, Nature, vol. 532(7600), pages 435-437, April.
    7. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    8. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    9. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    10. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    11. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    12. Matsuda, Kazuo & Kawazuishi, Kenichi & Kansha, Yasuki & Fushimi, Chihiro & Nagao, Masaki & Kunikiyo, Hiroshi & Masuda, Fusao & Tsutsumi, Atsushi, 2011. "Advanced energy saving in distillation process with self-heat recuperation technology," Energy, Elsevier, vol. 36(8), pages 4640-4645.
    13. Ferchichi, Mariem & Hegely, Laszlo & Lang, Peter, 2022. "Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine," Energy, Elsevier, vol. 239(PE).
    14. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    15. Wenbin Wang & Yusuf Shi & Chenlin Zhang & Seunghyun Hong & Le Shi & Jian Chang & Renyuan Li & Yong Jin & Chisiang Ong & Sifei Zhuo & Peng Wang, 2019. "Simultaneous production of fresh water and electricity via multistage solar photovoltaic membrane distillation," Nature Communications, Nature, vol. 10(1), pages 1-9, December.
    16. Fu, Chao & Gundersen, Truls, 2013. "Recuperative vapor recompression heat pumps in cryogenic air separation processes," Energy, Elsevier, vol. 59(C), pages 708-718.
    17. Van Duc Long, Nguyen & Lee, Moonyong, 2013. "A novel NGL (natural gas liquid) recovery process based on self-heat recuperation," Energy, Elsevier, vol. 57(C), pages 663-670.
    18. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    19. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    20. Palacios-Bereche, Reynaldo & Ensinas, Adriano V. & Modesto, Marcelo & Nebra, Silvia A., 2015. "Double-effect distillation and thermal integration applied to the ethanol production process," Energy, Elsevier, vol. 82(C), pages 512-523.
    21. Zhao, Yongteng & Ma, Kang & Bai, Wenting & Du, Deqing & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2018. "Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol," Energy, Elsevier, vol. 148(C), pages 296-308.
    22. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    23. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    24. Fu, Qian & Kansha, Yasuki & Song, Chunfeng & Liu, Yuping & Ishizuka, Masanori & Tsutsumi, Atsushi, 2016. "A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants," Applied Energy, Elsevier, vol. 162(C), pages 1114-1121.
    25. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    26. Layritz, Lucia S. & Dolganova, Iulia & Finkbeiner, Matthias & Luderer, Gunnar & Penteado, Alberto T. & Ueckerdt, Falko & Repke, Jens-Uwe, 2021. "The potential of direct steam cracker electrification and carbon capture & utilization via oxidative coupling of methane as decarbonization strategies for ethylene production," Applied Energy, Elsevier, vol. 296(C).
    27. Jin, Bo & Zhao, Haibo & Zheng, Chuguang & Liang, Zhiwu, 2018. "Control optimization to achieve energy-efficient operation of the air separation unit in oxy-fuel combustion power plants," Energy, Elsevier, vol. 152(C), pages 313-321.
    28. Andrea Liberale Rispoli & Giacomo Rispoli & Nicola Verdone & Annarita Salladini & Emanuela Agostini & Mirko Boccacci & Maria Paola Parisi & Barbara Mazzarotta & Giorgio Vilardi, 2021. "The Electrification of Conventional Industrial Processes: The Use of Mechanical Vapor Compression in an EtOH–Water Distillation Tower," Energies, MDPI, vol. 14(21), pages 1-18, November.
    29. Gabrielli, Paolo & Gazzani, Matteo & Martelli, Emanuele & Mazzotti, Marco, 2018. "Optimal design of multi-energy systems with seasonal storage," Applied Energy, Elsevier, vol. 219(C), pages 408-424.
    30. Kirschen, Marcus & Risonarta, Victor & Pfeifer, Herbert, 2009. "Energy efficiency and the influence of gas burners to the energy related carbon dioxide emissions of electric arc furnaces in steel industry," Energy, Elsevier, vol. 34(9), pages 1065-1072.
    31. Li, Hong & Zhao, Zhenyu & Xiouras, Christos & Stefanidis, Georgios D. & Li, Xingang & Gao, Xin, 2019. "Fundamentals and applications of microwave heating to chemicals separation processes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 114(C), pages 1-1.
    32. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Wu, Peng & Liu, Lili, 2012. "Energy and exergy analysis of a five-column methanol distillation scheme," Energy, Elsevier, vol. 45(1), pages 696-703.
    33. Wang, Naigen & Ye, Qing & Chen, Lijuan & Zhang, Haoxiang & Zhong, Jing, 2021. "Improving the economy and energy efficiency of separating water/acetonitrile/isopropanol mixture via triple-column pressure-swing distillation with heat-pump technology," Energy, Elsevier, vol. 215(PA).
    34. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    35. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    36. Ding, Zhixiong & Wu, Wei & Leung, Michael, 2021. "Advanced/hybrid thermal energy storage technology: material, cycle, system and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    37. Araújo, Antonio B. & Brito, Romildo P. & Vasconcelos, Luís S., 2007. "Exergetic analysis of distillation processes—A case study," Energy, Elsevier, vol. 32(7), pages 1185-1193.
    38. Papadis, Elisa & Tsatsaronis, George, 2020. "Challenges in the decarbonization of the energy sector," Energy, Elsevier, vol. 205(C).
    39. Sakr, Mohamed & Liu, Shuli, 2014. "A comprehensive review on applications of ohmic heating (OH)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 39(C), pages 262-269.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    2. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    3. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    4. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    5. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    6. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    7. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    8. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    9. Cui, Chengtian & Li, Xingang & Guo, Dongrong & Sun, Jinsheng, 2017. "Towards energy efficient styrene distillation scheme: From grassroots design to retrofit," Energy, Elsevier, vol. 134(C), pages 193-205.
    10. Kiss, Anton A. & Smith, Robin, 2020. "Rethinking energy use in distillation processes for a more sustainable chemical industry," Energy, Elsevier, vol. 203(C).
    11. Sun, Jinsheng & Dai, Leilei & Shi, Ming & Gao, Hong & Cao, Xijia & Liu, Guangxin, 2014. "Further optimization of a parallel double-effect organosilicon distillation scheme through exergy analysis," Energy, Elsevier, vol. 69(C), pages 370-377.
    12. Liu, Siyao & Cui, Chengtian & He, Jie & Sun, Jinsheng, 2018. "Feasibility assessment of a novel refrigeration FCC gas plant driven by self waste heat," Energy, Elsevier, vol. 145(C), pages 356-366.
    13. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    14. Marina, A. & Spoelstra, S. & Zondag, H.A. & Wemmers, A.K., 2021. "An estimation of the European industrial heat pump market potential," Renewable and Sustainable Energy Reviews, Elsevier, vol. 139(C).
    15. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    16. Sun, Jinsheng & Wang, Fan & Ma, Tingting & Gao, Hong & Liu, Yanzhen & Cai, Fang, 2012. "Exergy analysis of a parallel double-effect organosilicon monomer distillation scheme," Energy, Elsevier, vol. 47(1), pages 498-504.
    17. Ferchichi, Mariem & Hegely, Laszlo & Lang, Peter, 2022. "Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine," Energy, Elsevier, vol. 239(PE).
    18. Chen, Ting & Zhang, Bingjian & Chen, Qinglin, 2014. "Heat integration of fractionating systems in para-xylene plants based on column optimization," Energy, Elsevier, vol. 72(C), pages 311-321.
    19. Yang, Deming & Wan, Dehao & Yun, Yi & Yang, Shuzhuang, 2023. "Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology," Energy, Elsevier, vol. 262(PB).
    20. Areej Javed & Afaq Hassan & Muhammad Babar & Umair Azhar & Asim Riaz & Rana Mujahid & Tausif Ahmad & Muhammad Mubashir & Hooi Ren Lim & Pau Loke Show & Kuan Shiong Khoo, 2022. "A Comparison of the Exergy Efficiencies of Various Heat-Integrated Distillation Columns," Energies, MDPI, vol. 15(18), pages 1-15, September.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:199:y:2024:i:c:s1364032124002454. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.