IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v239y2022ipes0360544221028577.html
   My bibliography  Save this article

Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine

Author

Listed:
  • Ferchichi, Mariem
  • Hegely, Laszlo
  • Lang, Peter

Abstract

Different options to reduce the energy demand of a pressure-swing distillation process for separating the maximum-boiling azeotropic mixture water (A)-ethylenediamine (B) are studied by rigorous simulation. The total annualised cost (TAC) without any energy demand reduction option is minimised by a genetic algorithm coupled to a flow-sheet simulator, then the options partial (PHI) and full heat integration (FHI), and vapour recompression heat pumps (VRC) were studied. Heat pumps are applied either for only one (the high- or the low-pressure) or both columns. By optimising the flow rate of the working fluid of heat pumps, the compressor work, thus the energy demand and capital cost of the heat pump are considerably reduced. For the steam and electricity prices used, the optimised PHI is the most economical, reducing the TAC by 23.7%. The influence of these prices on the TAC of each configuration is also studied. The environmental evaluation is performed by calculating CO2 emissions and Eco-indicator 99 values. Heat pump-assisted processes have lower values compared to the other configurations, especially with optimal working fluid flow rate. PHI or FHI leads to a reduction of both above indicators, but they are still higher than those of heat pump-assisted processes.

Suggested Citation

  • Ferchichi, Mariem & Hegely, Laszlo & Lang, Peter, 2022. "Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine," Energy, Elsevier, vol. 239(PE).
  • Handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028577
    DOI: 10.1016/j.energy.2021.122608
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544221028577
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2021.122608?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    2. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    3. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Hegely, Laszlo & Lang, Peter, 2023. "Optimisation of the higher pressure of pressure-swing distillation of a maximum azeotropic mixture," Energy, Elsevier, vol. 271(C).
    2. Yang, Deming & Wan, Dehao & Yun, Yi & Yang, Shuzhuang, 2023. "Energy-saving distillation process for mixed trichlorobenzene based on ORC coupled MVR heat pump technology," Energy, Elsevier, vol. 262(PB).
    3. Cheng, Haiyang & Wang, Yangyang & Wang, Wenxin & Wen, Chunhe & Wei, Xuewen & Wang, Yu & Wang, Yinglong & Cui, Peizhe & Zhu, Zhaoyou, 2023. "Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation," Energy, Elsevier, vol. 284(C).
    4. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    6. Chen, Hao & Zhao, Li & Cong, Haifeng & Li, Xingang, 2022. "Synthesis of waste heat recovery using solar organic Rankine cycle in the separation of benzene/toluene/p-xylene process," Energy, Elsevier, vol. 255(C).
    7. Varbanov, Petar Sabev & Wang, Bohong & Ocłoń, Paweł & Radziszewska-Zielina, Elżbieta & Ma, Ting & Klemeš, Jiří Jaromír & Jia, Xuexiu, 2023. "Efficiency measures for energy supply and use aiming for a clean circular economy," Energy, Elsevier, vol. 283(C).
    8. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    3. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    4. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    5. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    6. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    7. Xu, Yue & Zhang, Lu & Cui, Guomin & Yang, Qiguo, 2023. "A heuristic approach to design a cost-effective and low-CO2 emission synthesis in a heat exchanger network with crude oil distillation units," Energy, Elsevier, vol. 271(C).
    8. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    9. Hegely, Laszlo & Lang, Peter, 2023. "Optimisation of the higher pressure of pressure-swing distillation of a maximum azeotropic mixture," Energy, Elsevier, vol. 271(C).
    10. Zhao, Yongteng & Ma, Kang & Bai, Wenting & Du, Deqing & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2018. "Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol," Energy, Elsevier, vol. 148(C), pages 296-308.
    11. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    12. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    13. Chen, Shuhang & Liu, Dongli & Li, Sizhuo & Gan, Zhihua & Qiu, Min, 2022. "Multi-objective thermo-economic optimization of Collins cycle," Energy, Elsevier, vol. 239(PD).
    14. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    15. Yang, Ao & Sun, Shirui & Eslamimanesh, Ali & Wei, Shun'an & Shen, Weifeng, 2019. "Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique," Energy, Elsevier, vol. 172(C), pages 320-332.
    16. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    17. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    18. Wang, Danfeng & Gu, Yu & Chen, Qianqian & Tang, Zhiyong, 2023. "Direct conversion of syngas to alpha olefins via Fischer–Tropsch synthesis: Process development and comparative techno-economic-environmental analysis," Energy, Elsevier, vol. 263(PE).
    19. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:239:y:2022:i:pe:s0360544221028577. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.