IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v258y2022ics0360544222017881.html
   My bibliography  Save this article

Process integration and electrification for efficient milk evaporation systems

Author

Listed:
  • Lincoln, Benjamin James
  • Kong, Lana
  • Pineda, Alyssa Mae
  • Walmsley, Timothy Gordon

Abstract

Industrial Process Integration and Electrification can provide an effective pathway to rapidly transition process heat in low temperature industries (i.e., heating <100 °C) away from coal or natural gas to renewable electricity. This paper aims to develop a highly efficient, completely electric milk evaporation system through the careful integration and selection of heat pump and Mechanical Vapour Recompression technologies. In response, this study reports an effective Process Integration and Electrification, PI&E, design method, which combines process simulation, heat and exergy Pinch Analysis, electrification technology (e.g., heat pump in this study) selection and integration, and flowsheet optimisation. As part of the method, design decisions are subject to process specific requirements, such as operability and product safety, to ensure solutions are technically and practically viable. Using the PI&E method for a milk evaporator system case study, this article reports the steps and end development of a new, fully electric milk evaporator system design, which requires 3593 kW of electricity (120 kWh/t of powder) and achieves a 32% operational cost and 82% emissions reduction. A sensitivity analysis was conducted of the final process design, which found it to apply to a wide variety of operating conditions.

Suggested Citation

  • Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
  • Handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017881
    DOI: 10.1016/j.energy.2022.124885
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544222017881
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2022.124885?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    2. Philipp, Matthias & Schumm, Gregor & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J. & Schlosser, Florian & Hesselbach, Jens, 2018. "Optimal energy supply structures for industrial food processing sites in different countries considering energy transitions," Energy, Elsevier, vol. 146(C), pages 112-123.
    3. Hamsani, Muhammad Nurheilmi & Walmsley, Timothy Gordon & Liew, Peng Yen & Wan Alwi, Sharifah Rafidah, 2018. "Combined Pinch and exergy numerical analysis for low temperature heat exchanger network," Energy, Elsevier, vol. 153(C), pages 100-112.
    4. Klemeš, Jiří Jaromír & Wang, Qiu-Wang & Varbanov, Petar Sabev & Zeng, Min & Chin, Hon Huin & Lal, Nathan Sanjay & Li, Nian-Qi & Wang, Bohong & Wang, Xue-Chao & Walmsley, Timothy Gordon, 2020. "Heat transfer enhancement, intensification and optimisation in heat exchanger network retrofit and operation," Renewable and Sustainable Energy Reviews, Elsevier, vol. 120(C).
    5. Walmsley, Timothy G. & Atkins, Martin J. & Walmsley, Michael R.W. & Neale, James R., 2016. "Appropriate placement of vapour recompression in ultra-low energy industrial milk evaporation systems using Pinch Analysis," Energy, Elsevier, vol. 116(P2), pages 1269-1281.
    6. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    7. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    8. Arpagaus, Cordin & Bless, Frédéric & Uhlmann, Michael & Schiffmann, Jürg & Bertsch, Stefan S., 2018. "High temperature heat pumps: Market overview, state of the art, research status, refrigerants, and application potentials," Energy, Elsevier, vol. 152(C), pages 985-1010.
    9. Yang, Minbo & Li, Ting & Feng, Xiao & Wang, Yufei, 2020. "A simulation-based targeting method for heat pump placements in heat exchanger networks," Energy, Elsevier, vol. 203(C).
    10. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Walden, Jasper V.M. & Wellig, Beat & Stathopoulos, Panagiotis, 2023. "Heat pump integration in non-continuous industrial processes by Dynamic Pinch Analysis Targeting," Applied Energy, Elsevier, vol. 352(C).
    2. Elsa Klinac & James Kenneth Carson & Duy Hoang & Qun Chen & Donald John Cleland & Timothy Gordon Walmsley, 2023. "Multi-Level Process Integration of Heat Pumps in Meat Processing," Energies, MDPI, vol. 16(8), pages 1-16, April.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Schlosser, F. & Jesper, M. & Vogelsang, J. & Walmsley, T.G. & Arpagaus, C. & Hesselbach, J., 2020. "Large-scale heat pumps: Applications, performance, economic feasibility and industrial integration," Renewable and Sustainable Energy Reviews, Elsevier, vol. 133(C).
    2. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Klemeš, Jiří Jaromír & Varbanov, Petar Sabev & Walmsley, Timothy G. & Jia, Xuexiu, 2018. "New directions in the implementation of Pinch Methodology (PM)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 98(C), pages 439-468.
    4. Florian Schlosser & Heinrich Wiebe & Timothy G. Walmsley & Martin J. Atkins & Michael R. W. Walmsley & Jens Hesselbach, 2020. "Heat Pump Bridge Analysis Using the Modified Energy Transfer Diagram," Energies, MDPI, vol. 14(1), pages 1-24, December.
    5. Ron-Hendrik Hechelmann & Jan-Peter Seevers & Alexander Otte & Jan Sponer & Matthias Stark, 2020. "Renewable Energy Integration for Steam Supply of Industrial Processes—A Food Processing Case Study," Energies, MDPI, vol. 13(10), pages 1-20, May.
    6. Cox, Jordan & Belding, Scott & Lowder, Travis, 2022. "Application of a novel heat pump model for estimating economic viability and barriers of heat pumps in dairy applications in the United States," Applied Energy, Elsevier, vol. 310(C).
    7. de Raad, Brendon & van Lieshout, Marit & Stougie, Lydia & Ramirez, Andrea, 2024. "Improving plant-level heat pump performance through process modifications," Applied Energy, Elsevier, vol. 358(C).
    8. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    9. Pieper, Henrik & Krupenski, Igor & Brix Markussen, Wiebke & Ommen, Torben & Siirde, Andres & Volkova, Anna, 2021. "Method of linear approximation of COP for heat pumps and chillers based on thermodynamic modelling and off-design operation," Energy, Elsevier, vol. 230(C).
    10. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    11. Adamson, Keri-Marie & Walmsley, Timothy Gordon & Carson, James K. & Chen, Qun & Schlosser, Florian & Kong, Lana & Cleland, Donald John, 2022. "High-temperature and transcritical heat pump cycles and advancements: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 167(C).
    12. Aguilera, José Joaquín & Meesenburg, Wiebke & Ommen, Torben & Markussen, Wiebke Brix & Poulsen, Jonas Lundsted & Zühlsdorf, Benjamin & Elmegaard, Brian, 2022. "A review of common faults in large-scale heat pumps," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
    13. Obrist, Michel D. & Kannan, Ramachandran & McKenna, Russell & Schmidt, Thomas J. & Kober, Tom, 2023. "High-temperature heat pumps in climate pathways for selected industry sectors in Switzerland," Energy Policy, Elsevier, vol. 173(C).
    14. Zhang, Xi & Hu, Bin & Wang, Ruzhu & Xu, Zhenyuan, 2024. "Performance enhancement of hybrid absorption-compression heat pump via internal heat recovery," Energy, Elsevier, vol. 286(C).
    15. Jesper, Mateo & Schlosser, Florian & Pag, Felix & Walmsley, Timothy Gordon & Schmitt, Bastian & Vajen, Klaus, 2021. "Large-scale heat pumps: Uptake and performance modelling of market-available devices," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Gómez-Hernández, J. & Grimes, R. & Briongos, J.V. & Marugán-Cruz, C. & Santana, D., 2023. "Carbon dioxide and acetone mixtures as refrigerants for industry heat pumps to supply temperature in the range 150–220 oC," Energy, Elsevier, vol. 269(C).
    17. Philipp, Matthias & Schumm, Gregor & Heck, Patrick & Schlosser, Florian & Peesel, Ron-Hendrik & Walmsley, Timothy G. & Atkins, Martin J., 2018. "Increasing energy efficiency of milk product batch sterilisation," Energy, Elsevier, vol. 164(C), pages 995-1010.
    18. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    19. Foslie, Sverre Stefanussen & Knudsen, Brage Rugstad & Korpås, Magnus, 2023. "Integrated design and operational optimization of energy systems in dairies," Energy, Elsevier, vol. 281(C).
    20. Timothy Gordon Walmsley & Benjamin James Lincoln & Roger Padullés & Donald John Cleland, 2024. "Advancing Industrial Process Electrification and Heat Pump Integration with New Exergy Pinch Analysis Targeting Techniques," Energies, MDPI, vol. 17(12), pages 1-18, June.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:258:y:2022:i:c:s0360544222017881. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.