IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v148y2018icp296-308.html
   My bibliography  Save this article

Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol

Author

Listed:
  • Zhao, Yongteng
  • Ma, Kang
  • Bai, Wenting
  • Du, Deqing
  • Zhu, Zhaoyou
  • Wang, Yinglong
  • Gao, Jun

Abstract

The major intrinsic obstacle of extractive distillation is the high energy consumption. It is an actual problem for reducing energy consumption of extractive distillation processes. Two thermally coupled ternary extractive distillation processes were studied to separate the ternary azeotropic mixture tetrahydrofuran/ethanol/water using a single component solvent (dimethyl sulfoxide) and a mixed solvent (dimethyl sulfoxide and ethylene glycol) as entrainer. The optimal conditions of all ternary extractive distillation processes were obtained based on the minimal total annual cost. Thermodynamic efficiency and CO2 emissions index were also considered to evaluate the energy efficiency and environmental impact of alternative ternary extractive distillation processes. The results show that the use of mixed entrainer can result in reduction in both energy consumption and total annual cost for the same ternary extractive distillation configuration. Comparisons of the conventional ternary extractive distillation process and thermally coupled ternary extractive distillation process 1 (combining extractive distillation column with entrainer-recovery column) with mixed entrainer show that a thermally coupled extractive distillation sequence with a side rectifier present the best results. However, thermally coupled ternary extractive distillation process 2 (combining extractive distillation column with entrainer-recovery column) does not show good result due to existence of remixing effect.

Suggested Citation

  • Zhao, Yongteng & Ma, Kang & Bai, Wenting & Du, Deqing & Zhu, Zhaoyou & Wang, Yinglong & Gao, Jun, 2018. "Energy-saving thermally coupled ternary extractive distillation process by combining with mixed entrainer for separating ternary mixture containing bioethanol," Energy, Elsevier, vol. 148(C), pages 296-308.
  • Handle: RePEc:eee:energy:v:148:y:2018:i:c:p:296-308
    DOI: 10.1016/j.energy.2018.01.161
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544218301890
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2018.01.161?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Kim, Young Han, 2016. "Energy saving of benzene separation process for environmentally friendly gasoline using an extended DWC (divided wall column)," Energy, Elsevier, vol. 100(C), pages 58-65.
    2. Gadalla, M. & Olujić, Ž. & de Rijke, A. & Jansens, P.J., 2006. "Reducing CO2 emissions of internally heat-integrated distillation columns for separation of close boiling mixtures," Energy, Elsevier, vol. 31(13), pages 2409-2417.
    3. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    2. Yang, Ao & Sun, Shirui & Eslamimanesh, Ali & Wei, Shun'an & Shen, Weifeng, 2019. "Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique," Energy, Elsevier, vol. 172(C), pages 320-332.
    3. Pan, Jeng-Shyang & Tian, Ai-Qing & Snášel, Václav & Kong, Lingping & Chu, Shu-Chuan, 2022. "Maximum power point tracking and parameter estimation for multiple-photovoltaic arrays based on enhanced pigeon-inspired optimization with Taguchi method," Energy, Elsevier, vol. 251(C).
    4. Cheng, Haiyang & Wang, Yangyang & Wang, Wenxin & Wen, Chunhe & Wei, Xuewen & Wang, Yu & Wang, Yinglong & Cui, Peizhe & Zhu, Zhaoyou, 2023. "Economic, environmental, exergy (3E) analysis and multi-objective genetic algorithm optimization of efficient and energy-saving separation of diethoxymethane/toluene/ethanol by extractive distillation," Energy, Elsevier, vol. 284(C).
    5. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    6. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    7. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    8. Lu, Jie & Song, Fuyu & Liu, Hao & Chang, Chengcheng & Cheng, Yi & Wang, Haisong, 2021. "Production of high concentration bioethanol from reed by combined liquid hot water and sodium carbonate-oxygen pretreatment," Energy, Elsevier, vol. 217(C).
    9. Geng, Xueli & Yan, Peng & Zhou, Hao & Li, Hong & Gao, Xin, 2023. "Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater," Renewable Energy, Elsevier, vol. 205(C), pages 929-944.
    10. Hegely, Laszlo & Lang, Peter, 2020. "Reduction of the energy demand of a second-generation bioethanol plant by heat integration and vapour recompression between different columns," Energy, Elsevier, vol. 208(C).
    11. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Yang, Ao & Sun, Shirui & Eslamimanesh, Ali & Wei, Shun'an & Shen, Weifeng, 2019. "Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique," Energy, Elsevier, vol. 172(C), pages 320-332.
    2. Zhang, Hongru & Wang, Shuai & Tang, Jiaxuan & Li, Ningning & Li, Yanan & Cui, Peizhe & Wang, Yinglong & Zheng, Shiqing & Zhu, Zhaoyou & Ma, Yixin, 2021. "Multi-objective optimization and control strategy for extractive distillation with dividing-wall column/pervaporation for separation of ternary azeotropes based on mechanism analysis," Energy, Elsevier, vol. 229(C).
    3. Li, Hui & Ni, Long & Yao, Yang & Sun, Cheng, 2020. "Annual performance experiments of an earth-air heat exchanger fresh air-handling unit in severe cold regions: Operation, economic and greenhouse gas emission analyses," Renewable Energy, Elsevier, vol. 146(C), pages 25-37.
    4. Kiss, Anton A. & Flores Landaeta, Servando J. & Infante Ferreira, Carlos A., 2012. "Towards energy efficient distillation technologies – Making the right choice," Energy, Elsevier, vol. 47(1), pages 531-542.
    5. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    6. Kaur, Jasdeep & Sangal, Vikas Kumar, 2017. "Reducing energy requirements for ETBE synthesis using reactive dividing wall distillation column," Energy, Elsevier, vol. 126(C), pages 671-676.
    7. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    8. Ferchichi, Mariem & Hegely, Laszlo & Lang, Peter, 2022. "Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine," Energy, Elsevier, vol. 239(PE).
    9. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    10. Chen, Shuhang & Liu, Dongli & Li, Sizhuo & Gan, Zhihua & Qiu, Min, 2022. "Multi-objective thermo-economic optimization of Collins cycle," Energy, Elsevier, vol. 239(PD).
    11. Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
    12. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    13. Bahadori, Alireza & Vuthaluru, Hari B., 2010. "Simple equations to correlate theoretical stages and operating reflux in fractionators," Energy, Elsevier, vol. 35(3), pages 1439-1446.
    14. Xu, Yue & Zhang, Lu & Cui, Guomin & Yang, Qiguo, 2023. "A heuristic approach to design a cost-effective and low-CO2 emission synthesis in a heat exchanger network with crude oil distillation units," Energy, Elsevier, vol. 271(C).
    15. van de Bor, D.M. & Infante Ferreira, C.A., 2013. "Quick selection of industrial heat pump types including the impact of thermodynamic losses," Energy, Elsevier, vol. 53(C), pages 312-322.
    16. Zhu, Huichao & Zhang, Houcheng, 2023. "Upgrading the low-grade waste heat from alkaline fuel cells via isopropanol-acetone-hydrogen chemical heat pumps," Energy, Elsevier, vol. 265(C).
    17. Elias Vieren & Toon Demeester & Wim Beyne & Chiara Magni & Hamed Abedini & Cordin Arpagaus & Stefan Bertsch & Alessia Arteconi & Michel De Paepe & Steven Lecompte, 2023. "The Potential of Vapor Compression Heat Pumps Supplying Process Heat between 100 and 200 °C in the Chemical Industry," Energies, MDPI, vol. 16(18), pages 1-28, September.
    18. Kiss, Anton A. & Ignat, Radu M., 2012. "Enhanced methanol recovery and glycerol separation in biodiesel production – DWC makes it happen," Applied Energy, Elsevier, vol. 99(C), pages 146-153.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:148:y:2018:i:c:p:296-308. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.