IDEAS home Printed from https://ideas.repec.org/a/eee/energy/v141y2017icp770-781.html
   My bibliography  Save this article

A novel energy-saving pressure swing distillation process based on self-heat recuperation technology

Author

Listed:
  • Xia, Hui
  • Ye, Qing
  • Feng, Shenyao
  • Li, Rui
  • Suo, Xiaomeng

Abstract

Pressure-swing distillation (PSD) is widely used to separate pressure-sensitive azeotropes. In the PSD process, the bottom stream is heated by hot utility in reboiler and the vapor stream is condensed by cold utility in condenser. Consequently, most of the heat supplied to reboiler is wasted in condenser. Self-heat recuperation technology is applied to achieve a novel energy-saving SHR-PSD process. In the SHR-PSD process, two compressors are used to improve the energy levels of two overhead streams so that the heat of the streams discharged from the compressors can be used to heat reboilers for both columns, and the sensible heat can be used to heat feed streams. Additionally, the heat exchanger network is used to optimize the heat integration of the SHR-PSD process. The proposed SHR-PSD process is compared with PSD process and full heat-integrated PSD (FHIPSD) process in terms of the energetic, economic and environmental performance. The results revealed that SHR-PSD process reduces energy consumption by 72.39% and 53.06% compared with the PSD and FHIPSD respectively, and the total annual cost is reduced by 36.65% and 5.18% compared to that of the PSD and FHIPSD, respectively. Moreover, this SHR-PSD process leads to lower CO2 emissions and improve thermodynamic efficiency.

Suggested Citation

  • Xia, Hui & Ye, Qing & Feng, Shenyao & Li, Rui & Suo, Xiaomeng, 2017. "A novel energy-saving pressure swing distillation process based on self-heat recuperation technology," Energy, Elsevier, vol. 141(C), pages 770-781.
  • Handle: RePEc:eee:energy:v:141:y:2017:i:c:p:770-781
    DOI: 10.1016/j.energy.2017.09.108
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0360544217316286
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.energy.2017.09.108?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Song, Chunfeng & Liu, Qingling & Ji, Na & Kansha, Yasuki & Tsutsumi, Atsushi, 2015. "Optimization of steam methane reforming coupled with pressure swing adsorption hydrogen production process by heat integration," Applied Energy, Elsevier, vol. 154(C), pages 392-401.
    2. Jana, Amiya K., 2010. "Heat integrated distillation operation," Applied Energy, Elsevier, vol. 87(5), pages 1477-1494, May.
    3. Matsuda, Kazuo & Kawazuishi, Kenichi & Kansha, Yasuki & Fushimi, Chihiro & Nagao, Masaki & Kunikiyo, Hiroshi & Masuda, Fusao & Tsutsumi, Atsushi, 2011. "Advanced energy saving in distillation process with self-heat recuperation technology," Energy, Elsevier, vol. 36(8), pages 4640-4645.
    4. Kansha, Yasuki & Ishizuka, Masanori & Song, Chunfeng & Tsutsumi, Atsushi, 2015. "Process intensification for dimethyl ether production by self-heat recuperation," Energy, Elsevier, vol. 90(P1), pages 122-127.
    5. Van Duc Long, Nguyen & Lee, Moonyong, 2013. "A novel NGL (natural gas liquid) recovery process based on self-heat recuperation," Energy, Elsevier, vol. 57(C), pages 663-670.
    6. Kravanja, Philipp & Modarresi, Ala & Friedl, Anton, 2013. "Heat integration of biochemical ethanol production from straw – A case study," Applied Energy, Elsevier, vol. 102(C), pages 32-43.
    7. Wang, Yufei & Feng, Xiao & Cai, Yan & Zhu, Maobin & Chu, Khim H., 2009. "Improving a process's efficiency by exploiting heat pockets in its heat exchange network," Energy, Elsevier, vol. 34(11), pages 1925-1932.
    8. Jana, Amiya K., 2016. "A new divided-wall heat integrated distillation column (HIDiC) for batch processing: Feasibility and analysis," Applied Energy, Elsevier, vol. 172(C), pages 199-206.
    9. Fu, Qian & Kansha, Yasuki & Song, Chunfeng & Liu, Yuping & Ishizuka, Masanori & Tsutsumi, Atsushi, 2016. "A cryogenic air separation process based on self-heat recuperation for oxy-combustion plants," Applied Energy, Elsevier, vol. 162(C), pages 1114-1121.
    10. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    11. Fu, Qian & Kansha, Yasuki & Song, Chunfeng & Liu, Yuping & Ishizuka, Masanori & Tsutsumi, Atsushi, 2016. "An elevated-pressure cryogenic air separation unit based on self-heat recuperation technology for integrated gasification combined cycle systems," Energy, Elsevier, vol. 103(C), pages 440-446.
    12. Poddar, Tuhin & Jagannath, Anoop & Almansoori, Ali, 2017. "Use of reactive distillation in biodiesel production: A simulation-based comparison of energy requirements and profitability indicators," Applied Energy, Elsevier, vol. 185(P2), pages 985-997.
    13. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.
    14. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Xu, Liang & Liu, Yangyang & Bai, Wenshuai & Tan, Zhaoyang & Xue, Wei, 2022. "Design and control of energy-saving double side-stream extractive distillation for the benzene/isopropanol/water separation," Energy, Elsevier, vol. 239(PA).
    2. Ferchichi, Mariem & Hegely, Laszlo & Lang, Peter, 2022. "Economic and environmental evaluation of heat pump-assisted pressure-swing distillation of maximum-boiling azeotropic mixture water-ethylenediamine," Energy, Elsevier, vol. 239(PE).
    3. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    4. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    5. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    6. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Kazemi, Abolghasem & Mehrabani-Zeinabad, Arjomand & Beheshti, Masoud, 2018. "Recently developed heat pump assisted distillation configurations: A comparative study," Applied Energy, Elsevier, vol. 211(C), pages 1261-1281.
    2. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    3. Yang, Minbo & Feng, Xiao & Liu, Guilian, 2016. "Heat integration of heat pump assisted distillation into the overall process," Applied Energy, Elsevier, vol. 162(C), pages 1-10.
    4. Long, Nguyen Van Duc & Minh, Le Quang & Nhien, Le Cao & Lee, Moonyong, 2015. "A novel self-heat recuperative dividing wall column to maximize energy efficiency and column throughput in retrofitting and debottlenecking of a side stream column," Applied Energy, Elsevier, vol. 159(C), pages 28-38.
    5. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    6. You, Xinqiang & Rodriguez-Donis, Ivonne & Gerbaud, Vincent, 2016. "Reducing process cost and CO2 emissions for extractive distillation by double-effect heat integration and mechanical heat pump," Applied Energy, Elsevier, vol. 166(C), pages 128-140.
    7. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    8. Khalili-Garakani, Amirhossein & Ivakpour, Javad & Kasiri, Norollah, 2016. "Evolutionary synthesis of optimum light ends recovery unit with exergy analysis application," Applied Energy, Elsevier, vol. 168(C), pages 507-522.
    9. Modla, G. & Lang, P., 2013. "Heat pump systems with mechanical compression for batch distillation," Energy, Elsevier, vol. 62(C), pages 403-417.
    10. Shi, Pengyuan & Zhang, Qingjun & Zeng, Aiwu & Ma, Youguang & Yuan, Xigang, 2020. "Eco-efficient vapor recompression-assisted pressure-swing distillation process for the separation of a maximum-boiling azeotrope," Energy, Elsevier, vol. 196(C).
    11. Allouhi, A. & Agrouaz, Y. & Benzakour Amine, Mohammed & Rehman, S. & Buker, M.S. & Kousksou, T. & Jamil, A. & Benbassou, A., 2017. "Design optimization of a multi-temperature solar thermal heating system for an industrial process," Applied Energy, Elsevier, vol. 206(C), pages 382-392.
    12. Markowski, Mariusz & Trafczynski, Marian & Kisielewski, Piotr, 2022. "The dynamic model of a rectification heat exchanger using the concept of heat-integrated distillation column," Energy, Elsevier, vol. 256(C).
    13. Modla, G., 2013. "Energy saving methods for the separation of a minimum boiling point azeotrope using an intermediate entrainer," Energy, Elsevier, vol. 50(C), pages 103-109.
    14. Jana, Amiya K., 2016. "An internal thermal integration arrangement for multicomponent batch rectifier: 1. Feasibility and analysis," Energy, Elsevier, vol. 115(P1), pages 230-237.
    15. Yang, Ao & Sun, Shirui & Eslamimanesh, Ali & Wei, Shun'an & Shen, Weifeng, 2019. "Energy-saving investigation for diethyl carbonate synthesis through the reactive dividing wall column combining the vapor recompression heat pump or different pressure thermally coupled technique," Energy, Elsevier, vol. 172(C), pages 320-332.
    16. Song, Chunfeng & Liu, Qingling & Ji, Na & Deng, Shuai & Zhao, Jun & Kitamura, Yutaka, 2017. "Natural gas purification by heat pump assisted MEA absorption process," Applied Energy, Elsevier, vol. 204(C), pages 353-361.
    17. Bessa, Larissa C.B.A. & Batista, Fabio R.M. & Meirelles, Antonio J.A., 2012. "Double-effect integration of multicomponent alcoholic distillation columns," Energy, Elsevier, vol. 45(1), pages 603-612.
    18. Jana, Amiya K. & Maiti, Debadrita, 2013. "An ideal internally heat integrated batch distillation with a jacketed still with application to a reactive system," Energy, Elsevier, vol. 57(C), pages 527-534.
    19. Uwitonze, Hosanna & Chaniago, Yus Donald & Lim, Hankwon, 2022. "Novel integrated energy-efficient dual-effect single mixed refrigerant and NGLs recovery process for small-scale natural gas processing plant," Energy, Elsevier, vol. 254(PA).
    20. Waheed, M.A. & Oni, A.O. & Adejuyigbe, S.B. & Adewumi, B.A. & Fadare, D.A., 2014. "Performance enhancement of vapor recompression heat pump," Applied Energy, Elsevier, vol. 114(C), pages 69-79.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:energy:v:141:y:2017:i:c:p:770-781. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.