IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v14y2021i21p7267-d671375.html
   My bibliography  Save this article

The Electrification of Conventional Industrial Processes: The Use of Mechanical Vapor Compression in an EtOH–Water Distillation Tower

Author

Listed:
  • Andrea Liberale Rispoli

    (Department of Chemical Engineering Materials Environment, “Sapienza” University of Rome, via Eudossiana 18, 00184 Rome, Italy)

  • Giacomo Rispoli

    (MyRechemical S.p.A., via di Vannina 88, 00156 Rome, Italy)

  • Nicola Verdone

    (Department of Chemical Engineering Materials Environment, “Sapienza” University of Rome, via Eudossiana 18, 00184 Rome, Italy)

  • Annarita Salladini

    (MyRechemical S.p.A., via di Vannina 88, 00156 Rome, Italy)

  • Emanuela Agostini

    (MyRechemical S.p.A., via di Vannina 88, 00156 Rome, Italy)

  • Mirko Boccacci

    (MyRechemical S.p.A., via di Vannina 88, 00156 Rome, Italy)

  • Maria Paola Parisi

    (Department of Chemical Engineering Materials Environment, “Sapienza” University of Rome, via Eudossiana 18, 00184 Rome, Italy)

  • Barbara Mazzarotta

    (Department of Chemical Engineering Materials Environment, “Sapienza” University of Rome, via Eudossiana 18, 00184 Rome, Italy)

  • Giorgio Vilardi

    (Department of Chemical Engineering Materials Environment, “Sapienza” University of Rome, via Eudossiana 18, 00184 Rome, Italy)

Abstract

The aim of this study is to analyze the exergetic, environmental, and economic impact of the electrification of a bio-refinery plant, considering the application of Mechanical Vapor Compression (MVC) to a conventional water–ethanol distillation column in the context of bioethanol production. The process was implemented in AspenPlus ® and Aspen Exchange Design and Rating (EDR) simulation environments, where a sensitivity analysis was also carried out, considering four scenarios characterized by different compressions’ operative conditions, and including a Coefficient of Performance ( CoP ) analysis of the proposed solution with MVC. Exergetic and economic analyses were performed, and the relevant impacts on Operative Expenditure (OpEx) and Capital Expenditure (CapEx) were analyzed. Comparing the base case scenario with the proposed solution, a reduction of operative costs of around 63% was achieved. Finally, an environmental analysis was carried out, showing a remarkable reduction in the carbon footprint of the unit, with a carbon dioxide emission reduction of almost 80% for the MVC solution, in line with RED target requirements.

Suggested Citation

  • Andrea Liberale Rispoli & Giacomo Rispoli & Nicola Verdone & Annarita Salladini & Emanuela Agostini & Mirko Boccacci & Maria Paola Parisi & Barbara Mazzarotta & Giorgio Vilardi, 2021. "The Electrification of Conventional Industrial Processes: The Use of Mechanical Vapor Compression in an EtOH–Water Distillation Tower," Energies, MDPI, vol. 14(21), pages 1-18, November.
  • Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7267-:d:671375
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/14/21/7267/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/14/21/7267/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Cui, Chengtian & Long, Nguyen Van Duc & Sun, Jinsheng & Lee, Moonyong, 2020. "Electrical-driven self-heat recuperative pressure-swing azeotropic distillation to minimize process cost and CO2 emission: Process electrification and simultaneous optimization," Energy, Elsevier, vol. 195(C).
    2. Chen, Chao & Lu, Yangsiyu & Banares-Alcantara, Rene, 2019. "Direct and indirect electrification of chemical industry using methanol production as a case study," Applied Energy, Elsevier, vol. 243(C), pages 71-90.
    3. Chen, Jiaxin & Zhang, Biying & Luo, Lingli & Zhang, Fan & Yi, Yanglei & Shan, Yuanyuan & Liu, Bianfang & Zhou, Yuan & Wang, Xin & Lü, Xin, 2021. "A review on recycling techniques for bioethanol production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 149(C).
    4. Gharagheizi, Farhad & Ilani-Kashkouli, Poorandokht & Hedden, Ronald C., 2018. "Standard molar chemical exergy: A new accurate model," Energy, Elsevier, vol. 158(C), pages 924-935.
    5. Elin Svensson & Matteo Morandin & Simon Harvey & Stavros Papadokonstantakis, 2020. "Studying the Role of System Aggregation in Energy Targeting: A Case Study of a Swedish Oil Refinery," Energies, MDPI, vol. 13(4), pages 1-28, February.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Antonio Trinca & Valentina Segneri & Thanasis Mpouras & Nelson Libardi & Giorgio Vilardi, 2022. "Recovery of Solid Waste in Industrial and Environmental Processes," Energies, MDPI, vol. 15(19), pages 1-5, October.
    2. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Cui, Chengtian & Qi, Meng & Zhang, Xiaodong & Sun, Jinsheng & Li, Qing & Kiss, Anton A. & Wong, David Shan-Hill & Masuku, Cornelius M. & Lee, Moonyong, 2024. "Electrification of distillation for decarbonization: An overview and perspective," Renewable and Sustainable Energy Reviews, Elsevier, vol. 199(C).
    2. Mehar Ullah & Daniel Gutierrez-Rojas & Eero Inkeri & Tero Tynjälä & Pedro H. J. Nardelli, 2022. "Operation of Power-to-X-Related Processes Based on Advanced Data-Driven Methods: A Comprehensive Review," Energies, MDPI, vol. 15(21), pages 1-17, October.
    3. Huang, Youwang & Wang, Haiyong & Zhang, Xinghua & Zhang, Qi & Wang, Chenguang & Ma, Longlong, 2022. "Accurate prediction of chemical exergy of technical lignins for exergy-based assessment on sustainable utilization processes," Energy, Elsevier, vol. 243(C).
    4. Jesús Marquina & María José Colinet & María del P. Pablo-Romero, 2021. "Measures to Promote Olive Grove Biomass in Spain and Andalusia: An Opportunity for Economic Recovery against COVID-19," Sustainability, MDPI, vol. 13(20), pages 1-33, October.
    5. Meloni, Eugenio & Martino, Marco & Palma, Vincenzo, 2022. "Microwave assisted steam reforming in a high efficiency catalytic reactor," Renewable Energy, Elsevier, vol. 197(C), pages 893-901.
    6. Geng, Xueli & Yan, Peng & Zhou, Hao & Li, Hong & Gao, Xin, 2023. "Process synthesis and 4E evaluation of hybrid reactive distillation processes for the ethanol and tert-butanol recovery from wastewater," Renewable Energy, Elsevier, vol. 205(C), pages 929-944.
    7. Svitnič, Tibor & Sundmacher, Kai, 2022. "Renewable methanol production: Optimization-based design, scheduling and waste-heat utilization with the FluxMax approach," Applied Energy, Elsevier, vol. 326(C).
    8. Lincoln, Benjamin James & Kong, Lana & Pineda, Alyssa Mae & Walmsley, Timothy Gordon, 2022. "Process integration and electrification for efficient milk evaporation systems," Energy, Elsevier, vol. 258(C).
    9. Ma, Qian & Chang, Yuan & Yuan, Bo & Song, Zhaozheng & Xue, Jinjun & Jiang, Qingzhe, 2022. "Utilizing carbon dioxide from refinery flue gas for methanol production: System design and assessment," Energy, Elsevier, vol. 249(C).
    10. Hermesmann, M. & Grübel, K. & Scherotzki, L. & Müller, T.E., 2021. "Promising pathways: The geographic and energetic potential of power-to-x technologies based on regeneratively obtained hydrogen," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    11. Walden, Jasper V.M. & Bähr, Martin & Glade, Anselm & Gollasch, Jens & Tran, A. Phong & Lorenz, Tom, 2023. "Nonlinear operational optimization of an industrial power-to-heat system with a high temperature heat pump, a thermal energy storage and wind energy," Applied Energy, Elsevier, vol. 344(C).
    12. Fernando Martins & Pedro Moura & Aníbal T. de Almeida, 2022. "The Role of Electrification in the Decarbonization of the Energy Sector in Portugal," Energies, MDPI, vol. 15(5), pages 1-35, February.
    13. Bühler, Fabian & Zühlsdorf, Benjamin & Nguyen, Tuong-Van & Elmegaard, Brian, 2019. "A comparative assessment of electrification strategies for industrial sites: Case of milk powder production," Applied Energy, Elsevier, vol. 250(C), pages 1383-1401.
    14. Lux, Benjamin & Pfluger, Benjamin, 2020. "A supply curve of electricity-based hydrogen in a decarbonized European energy system in 2050," Applied Energy, Elsevier, vol. 269(C).
    15. Duan, Cong & Li, Chunli, 2023. "Energy-saving improvement of heat integration for separating dilute azeotropic components in extractive distillation," Energy, Elsevier, vol. 263(PC).
    16. Li, Hong & Zhou, Hao & Liu, Kailong & Gao, Xin & Li, Xingang, 2021. "Retrofit application of traditional petroleum chemical technologies to coal chemical industry for sustainable energy-efficiency production," Energy, Elsevier, vol. 218(C).
    17. Dai, Min & Yang, Han & Yang, Fusheng & Zhang, Zaoxiao & Yu, Yunsong & Liu, Guilian & Feng, Xiao, 2022. "Multi-strategy Ensemble Non-dominated sorting genetic Algorithm-II (MENSGA-II) and application in energy-enviro-economic multi-objective optimization of separation for isopropyl alcohol/diisopropyl et," Energy, Elsevier, vol. 254(PA).
    18. Edgar Correa-Quintana & Yecid Muñoz-Maldonado & Adalberto Ospino-Castro, 2024. "Financial Evaluation of Alternatives for Industrial Methanol Production Using Renewable Energy with Heat Pump Technology," Energies, MDPI, vol. 17(22), pages 1-18, November.
    19. Son, Hyunsoo & Kim, Miae & Kim, Jin-Kuk, 2022. "Sustainable process integration of electrification technologies with industrial energy systems," Energy, Elsevier, vol. 239(PB).
    20. Miroslav Variny & Kristián Hanus & Marek Blahušiak & Patrik Furda & Peter Illés & Ján Janošovský, 2021. "Energy and Environmental Assessment of Steam Management Optimization in an Ethylene Plant," IJERPH, MDPI, vol. 18(22), pages 1-17, November.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7267-:d:671375. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.