IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v13y2020i13p3315-d377649.html
   My bibliography  Save this article

Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations

Author

Listed:
  • Phuong-Ha La

    (School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea)

  • Sung-Jin Choi

    (School of Electrical Engineering, University of Ulsan, Ulsan 44610, Korea)

Abstract

As the number of parallel battery connections in an energy storage system is increased to extend the energy capacity and second-life batteries are actively adopted, the battery is more prone to cell inconsistency issues. The difference in the internal impedance and the mismatched state-of-charge accelerates the self-balancing effect between the parallel branches to reduce cell utilization and eventually results in harmful effects, both to the lifetime and to the safety of the batteries. However, conventional methods only partially mitigate the parallel inconsistency issue. This paper proposes a dynamic resistance equalizer for parallel-connected battery configurations to improve equalization performance. The optimal design procedure is also presented to minimize the power loss and equalization time. The overall performance is experimentally verified by a sequence of tests for a Li-ion battery in a 2S-4P configuration. The experimental results show that the proposed method dissipates less external power loss than the fixed resistor equalizer and less internal loss than the conventional sequencing method. When both total loss and balancing performance are considered together, as the number of series connections increases, the merits of the proposed method stand out. This is verified by additional hardware-in-the-loop tests, presenting a fascinating feature for most practical battery applications.

Suggested Citation

  • Phuong-Ha La & Sung-Jin Choi, 2020. "Novel Dynamic Resistance Equalizer for Parallel-Connected Battery Configurations," Energies, MDPI, vol. 13(13), pages 1-17, June.
  • Handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3315-:d:377649
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/13/13/3315/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/13/13/3315/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Martinez-Laserna, E. & Gandiaga, I. & Sarasketa-Zabala, E. & Badeda, J. & Stroe, D.-I. & Swierczynski, M. & Goikoetxea, A., 2018. "Battery second life: Hype, hope or reality? A critical review of the state of the art," Renewable and Sustainable Energy Reviews, Elsevier, vol. 93(C), pages 701-718.
    2. Sandra Castano-Solis & Daniel Serrano-Jimenez & Lucia Gauchia & Javier Sanz, 2017. "The Influence of BMSs on the Characterization and Modeling of Series and Parallel Li-Ion Packs," Energies, MDPI, vol. 10(3), pages 1-13, February.
    3. Chuanxue Song & Yulong Shao & Shixin Song & Cheng Chang & Fang Zhou & Silun Peng & Feng Xiao, 2017. "Energy Management of Parallel-Connected Cells in Electric Vehicles Based on Fuzzy Logic Control," Energies, MDPI, vol. 10(3), pages 1-13, March.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    2. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    3. Wang, Mengmeng & Liu, Kang & Dutta, Shanta & Alessi, Daniel S. & Rinklebe, Jörg & Ok, Yong Sik & Tsang, Daniel C.W., 2022. "Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects," Renewable and Sustainable Energy Reviews, Elsevier, vol. 163(C).
    4. Maria A. Franco & Stefan N. Groesser, 2021. "A Systematic Literature Review of the Solar Photovoltaic Value Chain for a Circular Economy," Sustainability, MDPI, vol. 13(17), pages 1-35, August.
    5. Chiara Giosuè & Daniele Marchese & Matteo Cavalletti & Robertino Isidori & Massimo Conti & Simone Orcioni & Maria Letizia Ruello & Pierluigi Stipa, 2021. "An Exploratory Study of the Policies and Legislative Perspectives on the End-of-Life of Lithium-Ion Batteries from the Perspective of Producer Obligation," Sustainability, MDPI, vol. 13(20), pages 1-19, October.
    6. Nguyen-Tien, Viet & Dai, Qiang & Harper, Gavin D.J. & Anderson, Paul A. & Elliott, Robert J.R., 2022. "Optimising the geospatial configuration of a future lithium ion battery recycling industry in the transition to electric vehicles and a circular economy," Applied Energy, Elsevier, vol. 321(C).
    7. White, Chris & Thompson, Ben & Swan, Lukas G., 2021. "Comparative performance study of electric vehicle batteries repurposed for electricity grid energy arbitrage," Applied Energy, Elsevier, vol. 288(C).
    8. Kristóf Kummer & Attila R. Imre, 2021. "Seasonal and Multi-Seasonal Energy Storage by Power-to-Methane Technology," Energies, MDPI, vol. 14(11), pages 1-13, June.
    9. Xintian Liu & Zhihao Wan & Yao He & Xinxin Zheng & Guojian Zeng & Jiangfeng Zhang, 2018. "A Unified Control Strategy for Inductor-Based Active Battery Equalisation Schemes," Energies, MDPI, vol. 11(2), pages 1-16, February.
    10. Joern Falk & Björn Globisch & Martin Angelmahr & Wolfgang Schade & Heike Schenk-Mathes, 2022. "Drinking Water Supply in Rural Africa Based on a Mini-Grid Energy System—A Socio-Economic Case Study for Rural Development," Sustainability, MDPI, vol. 14(15), pages 1-19, August.
    11. Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
    12. Christos S. Ioakimidis & Alberto Murillo-Marrodán & Ali Bagheri & Dimitrios Thomas & Konstantinos N. Genikomsakis, 2019. "Life Cycle Assessment of a Lithium Iron Phosphate (LFP) Electric Vehicle Battery in Second Life Application Scenarios," Sustainability, MDPI, vol. 11(9), pages 1-14, May.
    13. Zongwei Liu & Xinglong Liu & Han Hao & Fuquan Zhao & Amer Ahmad Amer & Hassan Babiker, 2020. "Research on the Critical Issues for Power Battery Reusing of New Energy Vehicles in China," Energies, MDPI, vol. 13(8), pages 1-19, April.
    14. Hoarau, Quentin & Lorang, Etienne, 2022. "An assessment of the European regulation on battery recycling for electric vehicles," Energy Policy, Elsevier, vol. 162(C).
    15. Song, Ziyou & Feng, Shuo & Zhang, Lei & Hu, Zunyan & Hu, Xiaosong & Yao, Rui, 2019. "Economy analysis of second-life battery in wind power systems considering battery degradation in dynamic processes: Real case scenarios," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    16. Comello, Stephen & Glenk, Gunther & Reichelstein, Stefan, 2020. "Cost-efficient transition to clean energy transportation services," ZEW Discussion Papers 20-054, ZEW - Leibniz Centre for European Economic Research.
    17. Bizhong Xia & Zheng Zhang & Zizhou Lao & Wei Wang & Wei Sun & Yongzhi Lai & Mingwang Wang, 2018. "Strong Tracking of a H-Infinity Filter in Lithium-Ion Battery State of Charge Estimation," Energies, MDPI, vol. 11(6), pages 1-20, June.
    18. Koh, S.C.L. & Smith, L. & Miah, J. & Astudillo, D. & Eufrasio, R.M. & Gladwin, D. & Brown, S. & Stone, D., 2021. "Higher 2nd life Lithium Titanate battery content in hybrid energy storage systems lowers environmental-economic impact and balances eco-efficiency," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    19. Bernhard Faessler, 2021. "Stationary, Second Use Battery Energy Storage Systems and Their Applications: A Research Review," Energies, MDPI, vol. 14(8), pages 1-19, April.
    20. Li, Jizi & Liu, Fangbing & Zhang, Justin Z. & Tong, Zeping, 2023. "Optimal configuration of electric vehicle battery recycling system under across-network cooperation," Applied Energy, Elsevier, vol. 338(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:13:y:2020:i:13:p:3315-:d:377649. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.