Fast capacity and internal resistance estimation method for second-life batteries from electric vehicles
Author
Abstract
Suggested Citation
DOI: 10.1016/j.apenergy.2022.120235
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Tong, Shi Jie & Same, Adam & Kootstra, Mark A. & Park, Jae Wan, 2013. "Off-grid photovoltaic vehicle charge using second life lithium batteries: An experimental and numerical investigation," Applied Energy, Elsevier, vol. 104(C), pages 740-750.
- Yang, Duo & Wang, Yujie & Pan, Rui & Chen, Ruiyang & Chen, Zonghai, 2018. "State-of-health estimation for the lithium-ion battery based on support vector regression," Applied Energy, Elsevier, vol. 227(C), pages 273-283.
- Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
- Li, Yuanyuan & Sheng, Hanmin & Cheng, Yuhua & Stroe, Daniel-Ioan & Teodorescu, Remus, 2020. "State-of-health estimation of lithium-ion batteries based on semi-supervised transfer component analysis," Applied Energy, Elsevier, vol. 277(C).
- Jiang, Bo & Dai, Haifeng & Wei, Xuezhe, 2020. "Incremental capacity analysis based adaptive capacity estimation for lithium-ion battery considering charging condition," Applied Energy, Elsevier, vol. 269(C).
- Zhang, Youlang & Li, Yan & Tao, Yibin & Ye, Jilei & Pan, Aiqiang & Li, Xinzhou & Liao, Qiangqiang & Wang, Zhiqin, 2020. "Performance assessment of retired EV battery modules for echelon use," Energy, Elsevier, vol. 193(C).
- Mathews, Ian & Xu, Bolun & He, Wei & Barreto, Vanessa & Buonassisi, Tonio & Peters, Ian Marius, 2020. "Technoeconomic model of second-life batteries for utility-scale solar considering calendar and cycle aging," Applied Energy, Elsevier, vol. 269(C).
- Shu, Xing & Li, Guang & Shen, Jiangwei & Lei, Zhenzhen & Chen, Zheng & Liu, Yonggang, 2020. "A uniform estimation framework for state of health of lithium-ion batteries considering feature extraction and parameters optimization," Energy, Elsevier, vol. 204(C).
- Li, Xiaoyu & Yuan, Changgui & Wang, Zhenpo, 2020. "State of health estimation for Li-ion battery via partial incremental capacity analysis based on support vector regression," Energy, Elsevier, vol. 203(C).
Citations
Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
Cited by:
- Carlos Henrique Illa Font & Hugo Valadares Siqueira & João Eustáquio Machado Neto & João Lucas Ferreira dos Santos & Sergio Luiz Stevan & Attilio Converti & Fernanda Cristina Corrêa, 2023. "Second Life of Lithium-Ion Batteries of Electric Vehicles: A Short Review and Perspectives," Energies, MDPI, vol. 16(2), pages 1-14, January.
- Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
- Lalinde, Iñaki & Berrueta, Alberto & Arza, Joseba & Sanchis, Pablo & Ursúa, Alfredo, 2024. "On the characterization of lithium-ion batteries under overtemperature and overcharge conditions: Identification of abuse areas and experimental validation," Applied Energy, Elsevier, vol. 354(PB).
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
- Sui, Xin & He, Shan & Vilsen, Søren B. & Meng, Jinhao & Teodorescu, Remus & Stroe, Daniel-Ioan, 2021. "A review of non-probabilistic machine learning-based state of health estimation techniques for Lithium-ion battery," Applied Energy, Elsevier, vol. 300(C).
- Xu, Zhicheng & Wang, Jun & Lund, Peter D. & Zhang, Yaoming, 2021. "Estimation and prediction of state of health of electric vehicle batteries using discrete incremental capacity analysis based on real driving data," Energy, Elsevier, vol. 225(C).
- Jiang, Bo & Zhu, Jiangong & Wang, Xueyuan & Wei, Xuezhe & Shang, Wenlong & Dai, Haifeng, 2022. "A comparative study of different features extracted from electrochemical impedance spectroscopy in state of health estimation for lithium-ion batteries," Applied Energy, Elsevier, vol. 322(C).
- Wang, Qiao & Ye, Min & Wei, Meng & Lian, Gaoqi & Li, Yan, 2023. "Random health indicator and shallow neural network based robust capacity estimation for lithium-ion batteries with different fast charging protocols," Energy, Elsevier, vol. 271(C).
- Braco, Elisa & San Martín, Idoia & Sanchis, Pablo & Ursúa, Alfredo & Stroe, Daniel-Ioan, 2022. "State of health estimation of second-life lithium-ion batteries under real profile operation," Applied Energy, Elsevier, vol. 326(C).
- Xue, Qiao & Li, Junqiu & Xu, Peipei, 2022. "Machine learning based swift online capacity prediction of lithium-ion battery through whole cycle life," Energy, Elsevier, vol. 261(PA).
- Chen, Junxiong & Hu, Yuanjiang & Zhu, Qiao & Rashid, Haroon & Li, Hongkun, 2023. "A novel battery health indicator and PSO-LSSVR for LiFePO4 battery SOH estimation during constant current charging," Energy, Elsevier, vol. 282(C).
- Shen, Dongxu & Wu, Lifeng & Kang, Guoqing & Guan, Yong & Peng, Zhen, 2021. "A novel online method for predicting the remaining useful life of lithium-ion batteries considering random variable discharge current," Energy, Elsevier, vol. 218(C).
- Lai, Xin & Yi, Wei & Cui, Yifan & Qin, Chao & Han, Xuebing & Sun, Tao & Zhou, Long & Zheng, Yuejiu, 2021. "Capacity estimation of lithium-ion cells by combining model-based and data-driven methods based on a sequential extended Kalman filter," Energy, Elsevier, vol. 216(C).
- Li, Guanzheng & Li, Bin & Li, Chao & Wang, Shuai, 2023. "State-of-health rapid estimation for lithium-ion battery based on an interpretable stacking ensemble model with short-term voltage profiles," Energy, Elsevier, vol. 263(PE).
- Fu, Shiyi & Tao, Shengyu & Fan, Hongtao & He, Kun & Liu, Xutao & Tao, Yulin & Zuo, Junxiong & Zhang, Xuan & Wang, Yu & Sun, Yaojie, 2024. "Data-driven capacity estimation for lithium-ion batteries with feature matching based transfer learning method," Applied Energy, Elsevier, vol. 353(PA).
- Huang, Zhelin & Xu, Fan & Yang, Fangfang, 2023. "State of health prediction of lithium-ion batteries based on autoregression with exogenous variables model," Energy, Elsevier, vol. 262(PB).
- Emanuele Michelini & Patrick Höschele & Florian Ratz & Michael Stadlbauer & Werner Rom & Christian Ellersdorfer & Jörg Moser, 2023. "Potential and Most Promising Second-Life Applications for Automotive Lithium-Ion Batteries Considering Technical, Economic and Legal Aspects," Energies, MDPI, vol. 16(6), pages 1-21, March.
- Zhu, Yunlong & Dong, Zhe & Cheng, Zhonghua & Huang, Xiaojin & Dong, Yujie & Zhang, Zuoyi, 2023. "Neural network extended state-observer for energy system monitoring," Energy, Elsevier, vol. 263(PA).
- Sun, Tao & Wang, Shaoqing & Jiang, Sheng & Xu, Bowen & Han, Xuebing & Lai, Xin & Zheng, Yuejiu, 2022. "A cloud-edge collaborative strategy for capacity prognostic of lithium-ion batteries based on dynamic weight allocation and machine learning," Energy, Elsevier, vol. 239(PC).
- Li, Yihuan & Li, Kang & Liu, Xuan & Wang, Yanxia & Zhang, Li, 2021. "Lithium-ion battery capacity estimation — A pruned convolutional neural network approach assisted with transfer learning," Applied Energy, Elsevier, vol. 285(C).
- Diego Castanho & Marcio Guerreiro & Ludmila Silva & Jony Eckert & Thiago Antonini Alves & Yara de Souza Tadano & Sergio Luiz Stevan & Hugo Valadares Siqueira & Fernanda Cristina Corrêa, 2022. "Method for SoC Estimation in Lithium-Ion Batteries Based on Multiple Linear Regression and Particle Swarm Optimization," Energies, MDPI, vol. 15(19), pages 1-21, September.
- Wang, Fujin & Zhao, Zhibin & Zhai, Zhi & Guo, Yanjie & Xi, Huan & Wang, Shibin & Chen, Xuefeng, 2023. "Feature disentanglement and tendency retainment with domain adaptation for Lithium-ion battery capacity estimation," Reliability Engineering and System Safety, Elsevier, vol. 230(C).
- Xu, Tingting & Peng, Zhen & Wu, Lifeng, 2021. "A novel data-driven method for predicting the circulating capacity of lithium-ion battery under random variable current," Energy, Elsevier, vol. 218(C).
More about this item
Keywords
Energy storage; Electric vehicle; Lithium-ion battery; Second-life battery; Characterization;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:329:y:2023:i:c:s0306261922014921. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.