IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v157y2022ics1364032122000089.html
   My bibliography  Save this article

Blockchain review for battery supply chain monitoring and battery trading

Author

Listed:
  • Antônio Rufino Júnior, Carlos
  • Sanseverino, Eleonora Riva
  • Gallo, Pierluigi
  • Koch, Daniel
  • Schweiger, Hans-Georg
  • Zanin, Hudson

Abstract

The use of technologies such as Internet of Things (IoT), data processing and blockchain have allowed companies to serve their customers with better quality, efficiency, reliability and in the shortest possible time. The growing adoption of electric vehicles on the market has increased the demand for batteries that may have numerous manufacturers. Life expectancy is affected on manufacture, but also on operational conditions. A large number of parameters have a role on battery's health and thousands of data need to be evaluated and combined. The present work investigates the scenario of the battery industry in order to implement a blockchain-based platform for the supply chain implementation thus allowing a better control on performance of batteries and environmental impact. To achieve this goal, the authors carried out a systematic review with the following steps: identification of relevant studies, evaluation and summary of similar studies, comparison and extraction of data from the papers. The main motivation of this work is the use of the literature for justifying the use of the blockchain technology to track batteries and for identifying the main challenges in the related markets that can be addressed by this technology. The results of this systematic review show that the development of a blockchain-based platform for battery tracking will allow for greater transparency across the entire supply chain: production, reuse, recycling, disposal. Trasparency and traceability prevent clandestine markets, misuse and release of pollutants. Adressing these topics forsters the successful implemention of electric vehicles in the market.

Suggested Citation

  • Antônio Rufino Júnior, Carlos & Sanseverino, Eleonora Riva & Gallo, Pierluigi & Koch, Daniel & Schweiger, Hans-Georg & Zanin, Hudson, 2022. "Blockchain review for battery supply chain monitoring and battery trading," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
  • Handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032122000089
    DOI: 10.1016/j.rser.2022.112078
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S1364032122000089
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2022.112078?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Klein, Bruno Colling & Chagas, Mateus Ferreira & Watanabe, Marcos Djun Barbosa & Bonomi, Antonio & Maciel Filho, Rubens, 2019. "Low carbon biofuels and the New Brazilian National Biofuel Policy (RenovaBio): A case study for sugarcane mills and integrated sugarcane-microalgae biorefineries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    2. Sebastian Bräuer & Florian Plenter & Benjamin Klör & Markus Monhof & Daniel Beverungen & Jörg Becker, 2020. "Transactions for trading used electric vehicle batteries: theoretical underpinning and information systems design principles," Business Research, Springer;German Academic Association for Business Research, vol. 13(1), pages 311-342, April.
    3. Joao C. Ferreira & Ana Lucia Martins, 2018. "Building a Community of Users for Open Market Energy," Energies, MDPI, vol. 11(9), pages 1-21, September.
    4. Bhatti, Ghanishtha & Mohan, Harshit & Raja Singh, R., 2021. "Towards the future of smart electric vehicles: Digital twin technology," Renewable and Sustainable Energy Reviews, Elsevier, vol. 141(C).
    5. Yash Kotak & Carlos Marchante Fernández & Lluc Canals Casals & Bhavya Satishbhai Kotak & Daniel Koch & Christian Geisbauer & Lluís Trilla & Alberto Gómez-Núñez & Hans-Georg Schweiger, 2021. "End of Electric Vehicle Batteries: Reuse vs. Recycle," Energies, MDPI, vol. 14(8), pages 1-15, April.
    6. Tang, Yanyan & Zhang, Qi & Li, Yaoming & Li, Hailong & Pan, Xunzhang & Mclellan, Benjamin, 2019. "The social-economic-environmental impacts of recycling retired EV batteries under reward-penalty mechanism," Applied Energy, Elsevier, vol. 251(C), pages 1-1.
    7. Xiong, Rui & Pan, Yue & Shen, Weixiang & Li, Hailong & Sun, Fengchun, 2020. "Lithium-ion battery aging mechanisms and diagnosis method for automotive applications: Recent advances and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 131(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Gu, Xubo & Bai, Hanyu & Cui, Xiaofan & Zhu, Juner & Zhuang, Weichao & Li, Zhaojian & Hu, Xiaosong & Song, Ziyou, 2024. "Challenges and opportunities for second-life batteries: Key technologies and economy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 192(C).
    2. Carlos Antônio Rufino Júnior & Eleonora Riva Sanseverino & Pierluigi Gallo & Murilo Machado Amaral & Daniel Koch & Yash Kotak & Sergej Diel & Gero Walter & Hans-Georg Schweiger & Hudson Zanin, 2024. "Unraveling the Degradation Mechanisms of Lithium-Ion Batteries," Energies, MDPI, vol. 17(14), pages 1-51, July.
    3. Masoomi, Behzad & Sahebi, Iman Ghasemian & Gholian-Jouybari, Fatemeh & Mejia-Argueta, Christopher & Hajiaghaei-Keshteli, Mostafa, 2024. "The role of internet of things adoption on the sustainability performance of the renewable energy supply chain: A conceptual framework," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    4. Vincenzo Varriale & Antonello Cammarano & Francesca Michelino & Mauro Caputo, 2023. "Industry 5.0 and Triple Bottom Line Approach in Supply Chain Management: The State-of-the-Art," Sustainability, MDPI, vol. 15(7), pages 1-30, March.
    5. Yap, Kah Yung & Chin, Hon Huin & Klemeš, Jiří Jaromír, 2023. "Blockchain technology for distributed generation: A review of current development, challenges and future prospect," Renewable and Sustainable Energy Reviews, Elsevier, vol. 175(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Claudiu Vasile Kifor & Niculina Alexandra Grigore, 2023. "Circular Economy Approaches for Electrical and Conventional Vehicles," Sustainability, MDPI, vol. 15(7), pages 1-28, April.
    2. Canabarro, N.I. & Silva-Ortiz, P. & Nogueira, L.A.H. & Cantarella, H. & Maciel-Filho, R. & Souza, G.M., 2023. "Sustainability assessment of ethanol and biodiesel production in Argentina, Brazil, Colombia, and Guatemala," Renewable and Sustainable Energy Reviews, Elsevier, vol. 171(C).
    3. Santipont Ananwattanaporn & Atthapol Ngaopitakkul & Chaiyan Jettanasen, 2023. "Power Quality and Break-Even Points in the Use of Electric Motorcycles in the Case of the Thailand Residential Building," Sustainability, MDPI, vol. 16(1), pages 1-26, December.
    4. Zhang, Junwei & Zhang, Weige & Sun, Bingxiang & Zhang, Yanru & Fan, Xinyuan & Zhao, Bo, 2024. "A novel method of battery pack energy health estimation based on visual feature learning," Energy, Elsevier, vol. 293(C).
    5. Naseri, F. & Gil, S. & Barbu, C. & Cetkin, E. & Yarimca, G. & Jensen, A.C. & Larsen, P.G. & Gomes, C., 2023. "Digital twin of electric vehicle battery systems: Comprehensive review of the use cases, requirements, and platforms," Renewable and Sustainable Energy Reviews, Elsevier, vol. 179(C).
    6. Das, Kaushik & Kumar, Roushan & Krishna, Anurup, 2024. "Analyzing electric vehicle battery health performance using supervised machine learning," Renewable and Sustainable Energy Reviews, Elsevier, vol. 189(PA).
    7. Li, Jingjing & Wang, Zhaoxin & Li, Hui & Jiao, Jianling, 2024. "Which policy can effectively promote the formal recycling of power batteries in China?," Energy, Elsevier, vol. 299(C).
    8. Liu, Chang-Yi & Wang, Hui & Tang, Juan & Chang, Ching-Ter & Liu, Zhi, 2021. "Optimal recovery model in a used batteries closed-loop supply chain considering uncertain residual capacity," Transportation Research Part E: Logistics and Transportation Review, Elsevier, vol. 156(C).
    9. Shahjalal, Mohammad & Roy, Probir Kumar & Shams, Tamanna & Fly, Ashley & Chowdhury, Jahedul Islam & Ahmed, Md. Rishad & Liu, Kailong, 2022. "A review on second-life of Li-ion batteries: prospects, challenges, and issues," Energy, Elsevier, vol. 241(C).
    10. Li, Yong & Wang, Liye & Feng, Yanbiao & Liao, Chenglin & Yang, Jue, 2024. "An online state-of-health estimation method for lithium-ion battery based on linear parameter-varying modeling framework," Energy, Elsevier, vol. 298(C).
    11. Deqing Ma & Pengcheng Ma & Jinsong Hu, 2024. "The Impact of Blockchain Technology Adoption on an E-Commerce Closed-Loop Supply Chain Considering Consumer Trust," Sustainability, MDPI, vol. 16(4), pages 1-41, February.
    12. Yongyou Nie & Yuhan Wang & Lu Li & Haolan Liao, 2023. "Literature Review on Power Battery Echelon Reuse and Recycling from a Circular Economy Perspective," IJERPH, MDPI, vol. 20(5), pages 1-28, February.
    13. Gul, Eid & Baldinelli, Giorgio & Bartocci, Pietro & Bianchi, Francesco & Domenghini, Piergiovanni & Cotana, Franco & Wang, Jinwen, 2022. "A techno-economic analysis of a solar PV and DC battery storage system for a community energy sharing," Energy, Elsevier, vol. 244(PB).
    14. Herrera Adarme, Oscar Fernando & Baêta, Bruno Eduardo Lobo & Alves Gurgel, Leandro Vinícius & de Ávila Rodrigues, Fabio & Aquino, Sérgio Francisco de, 2022. "Is anaerobic co-digestion the missing link to integrate sugarcane biorefinery?," Renewable Energy, Elsevier, vol. 195(C), pages 488-496.
    15. Chen, Jiumei & Zhang, Wen & Gong, Bengang & Zhang, Xiaoqi & Li, Hongping, 2022. "Optimal policy for the recycling of electric vehicle retired power batteries," Technological Forecasting and Social Change, Elsevier, vol. 183(C).
    16. Lázaro V. Cremades & Lluc Canals Casals, 2022. "Analysis of the Future of Mobility: The Battery Electric Vehicle Seems Just a Transitory Alternative," Energies, MDPI, vol. 15(23), pages 1-12, December.
    17. Mandegari, Mohsen & Ebadian, Mahmood & Saddler, Jack (John), 2023. "The need for effective life cycle assessment (LCA) to enhance the effectiveness of policies such as low carbon fuel standards (LCFS's)," Energy Policy, Elsevier, vol. 181(C).
    18. Sai Vinayak Ganesh & Matilde D’Arpino, 2023. "Critical Comparison of Li-Ion Aging Models for Second Life Battery Applications," Energies, MDPI, vol. 16(7), pages 1-23, March.
    19. Naseri, F. & Karimi, S. & Farjah, E. & Schaltz, E., 2022. "Supercapacitor management system: A comprehensive review of modeling, estimation, balancing, and protection techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 155(C).
    20. Bayer, Daniel R. & Pruckner, Marco, 2024. "Data-driven heat pump retrofit analysis in residential buildings: Carbon emission reductions and economic viability," Applied Energy, Elsevier, vol. 373(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:157:y:2022:i:c:s1364032122000089. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.