IDEAS home Printed from https://ideas.repec.org/a/eee/appene/v179y2016icp284-301.html
   My bibliography  Save this article

Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review

Author

Listed:
  • Miró, Laia
  • Gasia, Jaume
  • Cabeza, Luisa F.

Abstract

Industrial activities have a huge potential for waste heat recovery. In spite of its high potential, industrial waste heat (IWH) is currently underutilized. This may be due, on one hand, to the technical and economic difficulties in applying conventional heat recovery methods and, on the other, the temporary or geographical mismatch between the energy released and its heat demand. Thermal energy storage (TES) is a technology which can solve the existing mismatch by recovering the IWH and storing it for a later use. Moreover, the use of recovered IWH leads to a decrease of CO2 emissions and to economic and energy savings. Depending on the distance between the IWH source and the heat demand, TES systems can be placed on-site or the IWH can be transported by means of mobile TES systems, to an off-site heat demand. Around 50 industry case studies, in which both on-site and off-site recovery systems are considered are here reviewed and discussed taking into account the characteristics of the heat source, the heat, the TES system, and the economic, environmental and energy savings. Besides, the trends and the maturity of the cases reviewed have been considered. On-site TES systems in the basic metals manufacturing are the technology and industrial sector which has focused the most attention among the researchers, respectively. Moreover, water (or steam), erythritol and zeolite are the TES materials used in most industries and space comfort and electricity generation are the most recurrent applications.

Suggested Citation

  • Miró, Laia & Gasia, Jaume & Cabeza, Luisa F., 2016. "Thermal energy storage (TES) for industrial waste heat (IWH) recovery: A review," Applied Energy, Elsevier, vol. 179(C), pages 284-301.
  • Handle: RePEc:eee:appene:v:179:y:2016:i:c:p:284-301
    DOI: 10.1016/j.apenergy.2016.06.147
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0306261916309357
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.apenergy.2016.06.147?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Li, Yongliang & Sciacovelli, Adriano & Peng, Xiaodong & Radcliffe, Jonathan & Ding, Yulong, 2016. "Integrating compressed air energy storage with a diesel engine for electricity generation in isolated areas," Applied Energy, Elsevier, vol. 171(C), pages 26-36.
    2. Wang, Weilong & Guo, Shaopeng & Li, Hailong & Yan, Jinyue & Zhao, Jun & Li, Xun & Ding, Jing, 2014. "Experimental study on the direct/indirect contact energy storage container in mobilized thermal energy system (M-TES)," Applied Energy, Elsevier, vol. 119(C), pages 181-189.
    3. Shon, Jungwook & Kim, Hyungik & Lee, Kihyung, 2014. "Improved heat storage rate for an automobile coolant waste heat recovery system using phase-change material in a fin–tube heat exchanger," Applied Energy, Elsevier, vol. 113(C), pages 680-689.
    4. Pandiyarajan, V. & Chinna Pandian, M. & Malan, E. & Velraj, R. & Seeniraj, R.V., 2011. "Experimental investigation on heat recovery from diesel engine exhaust using finned shell and tube heat exchanger and thermal storage system," Applied Energy, Elsevier, vol. 88(1), pages 77-87, January.
    5. Brückner, Sarah & Liu, Selina & Miró, Laia & Radspieler, Michael & Cabeza, Luisa F. & Lävemann, Eberhard, 2015. "Industrial waste heat recovery technologies: An economic analysis of heat transformation technologies," Applied Energy, Elsevier, vol. 151(C), pages 157-167.
    6. Zhang, Yuan & Yang, Ke & Li, Xuemei & Xu, Jianzhong, 2013. "The thermodynamic effect of thermal energy storage on compressed air energy storage system," Renewable Energy, Elsevier, vol. 50(C), pages 227-235.
    7. Barati, M. & Esfahani, S. & Utigard, T.A., 2011. "Energy recovery from high temperature slags," Energy, Elsevier, vol. 36(9), pages 5440-5449.
    8. Gude, Veera Gnaneswar, 2015. "Energy storage for desalination processes powered by renewable energy and waste heat sources," Applied Energy, Elsevier, vol. 137(C), pages 877-898.
    9. Acaravci, Ali & Ozturk, Ilhan, 2010. "On the relationship between energy consumption, CO2 emissions and economic growth in Europe," Energy, Elsevier, vol. 35(12), pages 5412-5420.
    10. Guo, Shaopeng & Li, Hailong & Zhao, Jun & Li, Xun & Yan, Jinyue, 2013. "Numerical simulation study on optimizing charging process of the direct contact mobilized thermal energy storage," Applied Energy, Elsevier, vol. 112(C), pages 1416-1423.
    11. Miró, Laia & Brückner, Sarah & Cabeza, Luisa F., 2015. "Mapping and discussing Industrial Waste Heat (IWH) potentials for different countries," Renewable and Sustainable Energy Reviews, Elsevier, vol. 51(C), pages 847-855.
    12. Brueckner, Sarah & Miró, Laia & Cabeza, Luisa F. & Pehnt, Martin & Laevemann, Eberhard, 2014. "Methods to estimate the industrial waste heat potential of regions – A categorization and literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 38(C), pages 164-171.
    13. Maruoka, Nobuhiro & Akiyama, Tomohiro, 2006. "Exergy recovery from steelmaking off-gas by latent heat storage for methanol production," Energy, Elsevier, vol. 31(10), pages 1632-1642.
    14. Pandiyarajan, V. & Chinnappandian, M. & Raghavan, V. & Velraj, R., 2011. "Second law analysis of a diesel engine waste heat recovery with a combined sensible and latent heat storage system," Energy Policy, Elsevier, vol. 39(10), pages 6011-6020, October.
    15. Li, Hailong & Wang, Weilong & Yan, Jinyue & Dahlquist, Erik, 2013. "Economic assessment of the mobilized thermal energy storage (M-TES) system for distributed heat supply," Applied Energy, Elsevier, vol. 104(C), pages 178-186.
    16. Safaei, Hossein & Keith, David, 2014. "Compressed air energy storage with waste heat export: An Alberta case study," Scholarly Articles 13489207, Harvard Kennedy School of Government.
    17. Miró, Laia & Brueckner, Sarah & McKenna, Russell & Cabeza, Luisa F., 2016. "Methodologies to estimate industrial waste heat potential by transferring key figures: A case study for Spain," Applied Energy, Elsevier, vol. 169(C), pages 866-873.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
    2. Ji, Chenzhen & Qin, Zhen & Dubey, Swapnil & Choo, Fook Hoong & Duan, Fei, 2017. "Three-dimensional transient numerical study on latent heat thermal storage for waste heat recovery from a low temperature gas flow," Applied Energy, Elsevier, vol. 205(C), pages 1-12.
    3. Du, Kun & Calautit, John & Eames, Philip & Wu, Yupeng, 2021. "A state-of-the-art review of the application of phase change materials (PCM) in Mobilized-Thermal Energy Storage (M-TES) for recovering low-temperature industrial waste heat (IWH) for distributed heat," Renewable Energy, Elsevier, vol. 168(C), pages 1040-1057.
    4. Hong, Gui-Bing & Pan, Tze-Chin & Chan, David Yih-Liang & Liu, I-Hung, 2020. "Bottom-up analysis of industrial waste heat potential in Taiwan," Energy, Elsevier, vol. 198(C).
    5. Oh, Jinwoo & Han, Ukmin & Jung, Yujun & Kang, Yong Tae & Lee, Hoseong, 2024. "Advancing waste heat potential assessment for net-zero emissions: A review of demand-based thermal energy systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 202(C).
    6. Bühler, Fabian & Petrović, Stefan & Karlsson, Kenneth & Elmegaard, Brian, 2017. "Industrial excess heat for district heating in Denmark," Applied Energy, Elsevier, vol. 205(C), pages 991-1001.
    7. Serge Nyallang Nyamsi & Ivan Tolj & Mykhaylo Lototskyy, 2019. "Metal Hydride Beds-Phase Change Materials: Dual Mode Thermal Energy Storage for Medium-High Temperature Industrial Waste Heat Recovery," Energies, MDPI, vol. 12(20), pages 1-27, October.
    8. Wu, Chang-Bo & Wu, Gang & Yang, Xi & Liu, Yu-Jing & Liang, Tao & Fu, Wei-Fei & Wang, Mang & Chen, Hong-Zheng, 2015. "Preparation of microencapsulated medium temperature phase change material of Tris(hydroxymethyl)methyl aminomethane@SiO2 with excellent cycling performance," Applied Energy, Elsevier, vol. 154(C), pages 361-368.
    9. Lin, Yuancheng & Chong, Chin Hao & Ma, Linwei & Li, Zheng & Ni, Weidou, 2022. "Quantification of waste heat potential in China: A top-down Societal Waste Heat Accounting Model," Energy, Elsevier, vol. 261(PB).
    10. Parsazadeh, Mohammad & Duan, Xili, 2018. "Numerical study on the effects of fins and nanoparticles in a shell and tube phase change thermal energy storage unit," Applied Energy, Elsevier, vol. 216(C), pages 142-156.
    11. Guelpa, Elisa & Verda, Vittorio, 2019. "Thermal energy storage in district heating and cooling systems: A review," Applied Energy, Elsevier, vol. 252(C), pages 1-1.
    12. Kuta, Marta, 2023. "Mobilized thermal energy storage (M-TES) system design for cooperation with geothermal energy sources," Applied Energy, Elsevier, vol. 332(C).
    13. Lygnerud, Kristina & Werner, Sven, 2018. "Risk assessment of industrial excess heat recovery in district heating systems," Energy, Elsevier, vol. 151(C), pages 430-441.
    14. Guo, Shaopeng & Zhao, Jun & Wang, Weilong & Yan, Jinyue & Jin, Guang & Wang, Xiaotong, 2017. "Techno-economic assessment of mobilized thermal energy storage for distributed users: A case study in China," Applied Energy, Elsevier, vol. 194(C), pages 481-486.
    15. Xiaofeng Guo & Alain Pascal Goumba & Cheng Wang, 2019. "Comparison of Direct and Indirect Active Thermal Energy Storage Strategies for Large-Scale Solar Heating Systems," Energies, MDPI, vol. 12(10), pages 1-18, May.
    16. Couvreur, Kenny & Beyne, Wim & De Paepe, Michel & Lecompte, Steven, 2020. "Hot water storage for increased electricity production with organic Rankine cycle from intermittent residual heat sources in the steel industry," Energy, Elsevier, vol. 200(C).
    17. Li, Xiao-Yan & Qu, Dong-Qi & Yang, Liu & Li, Kai-Di, 2017. "Experimental and numerical investigation of discharging process of direct contact thermal energy storage for use in conventional air-conditioning systems," Applied Energy, Elsevier, vol. 189(C), pages 211-220.
    18. Zhang, Qi & Zhao, Xiaoyu & Lu, Hongyou & Ni, Tuanjie & Li, Yu, 2017. "Waste energy recovery and energy efficiency improvement in China’s iron and steel industry," Applied Energy, Elsevier, vol. 191(C), pages 502-520.
    19. Bühler, Fabian & Petrović, Stefan & Holm, Fridolin Müller & Karlsson, Kenneth & Elmegaard, Brian, 2018. "Spatiotemporal and economic analysis of industrial excess heat as a resource for district heating," Energy, Elsevier, vol. 151(C), pages 715-728.
    20. Du, Kun & Calautit, John & Wang, Zhonghua & Wu, Yupeng & Liu, Hao, 2018. "A review of the applications of phase change materials in cooling, heating and power generation in different temperature ranges," Applied Energy, Elsevier, vol. 220(C), pages 242-273.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:appene:v:179:y:2016:i:c:p:284-301. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/405891/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.