A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2013.12.033
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Li, Wei & Song, Guolin & Tang, Guoyi & Chu, Xiaodong & Ma, Sude & Liu, Caifeng, 2011. "Morphology, structure and thermal stability of microencapsulated phase change material with copolymer shell," Energy, Elsevier, vol. 36(2), pages 785-791.
- Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
- Chen, Zhong-Hua & Yu, Fei & Zeng, Xing-Rong & Zhang, Zheng-Guo, 2012. "Preparation, characterization and thermal properties of nanocapsules containing phase change material n-dodecanol by miniemulsion polymerization with polymerizable emulsifier," Applied Energy, Elsevier, vol. 91(1), pages 7-12.
- SarI, Ahmet & Alkan, Cemil & Karaipekli, Ali, 2010. "Preparation, characterization and thermal properties of PMMA/n-heptadecane microcapsules as novel solid-liquid microPCM for thermal energy storage," Applied Energy, Elsevier, vol. 87(5), pages 1529-1534, May.
- Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
- Tahan Latibari, Sara & Mehrali, Mohammad & Mehrali, Mehdi & Indra Mahlia, Teuku Meurah & Cornelis Metselaar, Hendrik Simon, 2013. "Synthesis, characterization and thermal properties of nanoencapsulated phase change materials via sol–gel method," Energy, Elsevier, vol. 61(C), pages 664-672.
- Zhang, P. & Ma, Z.W. & Wang, R.Z., 2010. "An overview of phase change material slurries: MPCS and CHS," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 598-614, February.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
- Wang, Lijiu & Meng, Duo, 2010. "Fatty acid eutectic/polymethyl methacrylate composite as form-stable phase change material for thermal energy storage," Applied Energy, Elsevier, vol. 87(8), pages 2660-2665, August.
- Song, Guolin & Ma, Sude & Tang, Guoyi & Yin, Zhansong & Wang, Xiaowei, 2010. "Preparation and characterization of flame retardant form-stable phase change materials composed by EPDM, paraffin and nano magnesium hydroxide," Energy, Elsevier, vol. 35(5), pages 2179-2183.
- Chen, Zhi & Fang, Guiyin, 2011. "Preparation and heat transfer characteristics of microencapsulated phase change material slurry: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(9), pages 4624-4632.
- Tyagi, V.V. & Kaushik, S.C. & Tyagi, S.K. & Akiyama, T., 2011. "Development of phase change materials based microencapsulated technology for buildings: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(2), pages 1373-1391, February.
- Wang, Weilong & Yang, Xiaoxi & Fang, Yutang & Ding, Jing, 2009. "Preparation and performance of form-stable polyethylene glycol/silicon dioxide composites as solid-liquid phase change materials," Applied Energy, Elsevier, vol. 86(2), pages 170-174, February.
- Hawlader, M. N. A. & Uddin, M. S. & Khin, Mya Mya, 2003. "Microencapsulated PCM thermal-energy storage system," Applied Energy, Elsevier, vol. 74(1-2), pages 195-202, January.
- Yu, Shiyu & Wang, Xiaodong & Wu, Dezhen, 2014. "Microencapsulation of n-octadecane phase change material with calcium carbonate shell for enhancement of thermal conductivity and serving durability: Synthesis, microstructure, and performance evaluat," Applied Energy, Elsevier, vol. 114(C), pages 632-643.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Cao, Lei & Su, Di & Tang, Yaojie & Fang, Guiyin & Tang, Fang, 2015. "Properties evaluation and applications of thermal energystorage materials in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 500-522.
- Yataganbaba, Alptug & Ozkahraman, Bengi & Kurtbas, Irfan, 2017. "Worldwide trends on encapsulation of phase change materials: A bibliometric analysis (1990–2015)," Applied Energy, Elsevier, vol. 185(P1), pages 720-731.
- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Sarı, Ahmet & Alkan, Cemil & Bilgin, Cahit, 2014. "Micro/nano encapsulation of some paraffin eutectic mixtures with poly(methyl methacrylate) shell: Preparation, characterization and latent heat thermal energy storage properties," Applied Energy, Elsevier, vol. 136(C), pages 217-227.
- Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
- Su, Weiguang & Darkwa, Jo & Kokogiannakis, Georgios, 2015. "Review of solid–liquid phase change materials and their encapsulation technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 373-391.
- Zhang, Ying & Wang, Xiaodong & Wu, Dezhen, 2016. "Microencapsulation of n-dodecane into zirconia shell doped with rare earth: Design and synthesis of bifunctional microcapsules for photoluminescence enhancement and thermal energy storage," Energy, Elsevier, vol. 97(C), pages 113-126.
- Umair, Malik Muhammad & Zhang, Yuang & Iqbal, Kashif & Zhang, Shufen & Tang, Bingtao, 2019. "Novel strategies and supporting materials applied to shape-stabilize organic phase change materials for thermal energy storage–A review," Applied Energy, Elsevier, vol. 235(C), pages 846-873.
- Giro-Paloma, Jessica & Barreneche, Camila & Martínez, Mònica & Šumiga, Boštjan & Cabeza, Luisa F. & Fernández, A. Inés, 2015. "Comparison of phase change slurries: Physicochemical and thermal properties," Energy, Elsevier, vol. 87(C), pages 223-227.
- Rao, Zhonghao & Wang, Shuangfeng & Peng, Feifei, 2012. "Self diffusion of the nano-encapsulated phase change materials: A molecular dynamics study," Applied Energy, Elsevier, vol. 100(C), pages 303-308.
- Zhao, C.Y. & Zhang, G.H., 2011. "Review on microencapsulated phase change materials (MEPCMs): Fabrication, characterization and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(8), pages 3813-3832.
- Amaral, C. & Vicente, R. & Marques, P.A.A.P. & Barros-Timmons, A., 2017. "Phase change materials and carbon nanostructures for thermal energy storage: A literature review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 79(C), pages 1212-1228.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
- Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2016. "Magnetic microencapsulated phase change materials with an organo-silica shell: Design, synthesis and application for electromagnetic shielding and thermal regulating polyimide films," Energy, Elsevier, vol. 98(C), pages 225-239.
- Chai, Luxiao & Wang, Xiaodong & Wu, Dezhen, 2015. "Development of bifunctional microencapsulated phase change materials with crystalline titanium dioxide shell for latent-heat storage and photocatalytic effectiveness," Applied Energy, Elsevier, vol. 138(C), pages 661-674.
- He, Fang & Wang, Xiaodong & Wu, Dezhen, 2014. "New approach for sol–gel synthesis of microencapsulated n-octadecane phase change material with silica wall using sodium silicate precursor," Energy, Elsevier, vol. 67(C), pages 223-233.
- Jiang, Fuyun & Wang, Xiaodong & Wu, Dezhen, 2014. "Design and synthesis of magnetic microcapsules based on n-eicosane core and Fe3O4/SiO2 hybrid shell for dual-functional phase change materials," Applied Energy, Elsevier, vol. 134(C), pages 456-468.
- Jiang, Binbin & Wang, Xiaodong & Wu, Dezhen, 2017. "Fabrication of microencapsulated phase change materials with TiO2/Fe3O4 hybrid shell as thermoregulatory enzyme carriers: A novel design of applied energy microsystem for bioapplications," Applied Energy, Elsevier, vol. 201(C), pages 20-33.
- Fang, Guiyin & Tang, Fang & Cao, Lei, 2014. "Preparation, thermal properties and applications of shape-stabilized thermal energy storage materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 237-259.
More about this item
Keywords
Thermal energy storage; Phase change material; PCM; Microencapsulation method; Microcapsule;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:31:y:2014:i:c:p:531-542. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.