A review on current status and challenges of inorganic phase change materials for thermal energy storage systems
Author
Abstract
Suggested Citation
DOI: 10.1016/j.rser.2016.12.012
Download full text from publisher
As the access to this document is restricted, you may want to search for a different version of it.
References listed on IDEAS
- Nithyanandam, K. & Pitchumani, R., 2013. "Computational studies on a latent thermal energy storage system with integral heat pipes for concentrating solar power," Applied Energy, Elsevier, vol. 103(C), pages 400-415.
- Khadiran, Tumirah & Hussein, Mohd Zobir & Zainal, Zulkarnain & Rusli, Rafeadah, 2016. "Advanced energy storage materials for building applications and their thermal performance characterization: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 57(C), pages 916-928.
- Huang, Zhaowen & Gao, Xuenong & Xu, Tao & Fang, Yutang & Zhang, Zhengguo, 2014. "Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material," Applied Energy, Elsevier, vol. 115(C), pages 265-271.
- López-Sabirón, Ana M. & Royo, Patricia & Ferreira, Victor J. & Aranda-Usón, Alfonso & Ferreira, Germán, 2014. "Carbon footprint of a thermal energy storage system using phase change materials for industrial energy recovery to reduce the fossil fuel consumption," Applied Energy, Elsevier, vol. 135(C), pages 616-624.
- Regin, A. Felix & Solanki, S.C. & Saini, J.S., 2008. "Heat transfer characteristics of thermal energy storage system using PCM capsules: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 12(9), pages 2438-2458, December.
- Zhang, P. & Xiao, X. & Meng, Z.N. & Li, M., 2015. "Heat transfer characteristics of a molten-salt thermal energy storage unit with and without heat transfer enhancement," Applied Energy, Elsevier, vol. 137(C), pages 758-772.
- Medrano, Marc & Gil, Antoni & Martorell, Ingrid & Potau, Xavi & Cabeza, Luisa F., 2010. "State of the art on high-temperature thermal energy storage for power generation. Part 2--Case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 56-72, January.
- Ettouney, Hisham M. & Alatiqi, Imad & Al-Sahali, Mohammad & Ahmad Al-Ali, Safaa, 2004. "Heat transfer enhancement by metal screens and metal spheres in phase change energy storage systems," Renewable Energy, Elsevier, vol. 29(6), pages 841-860.
- Giro-Paloma, Jessica & Martínez, Mònica & Cabeza, Luisa F. & Fernández, A. Inés, 2016. "Types, methods, techniques, and applications for microencapsulated phase change materials (MPCM): A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1059-1075.
- Ma, Bingqian & Li, Jianqiang & Xu, Zhe & Peng, Zhijian, 2014. "Fe-shell/Cu-core encapsulated metallic phase change materials prepared by aerodynamic levitation method," Applied Energy, Elsevier, vol. 132(C), pages 568-574.
- Ferrer, Gerard & Solé, Aran & Barreneche, Camila & Martorell, Ingrid & Cabeza, Luisa F., 2015. "Review on the methodology used in thermal stability characterization of phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 50(C), pages 665-685.
- Navarro, Lidia & de Gracia, Alvaro & Colclough, Shane & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 1. active storage systems," Renewable Energy, Elsevier, vol. 88(C), pages 526-547.
- Rathod, Manish K. & Banerjee, Jyotirmay, 2013. "Thermal stability of phase change materials used in latent heat energy storage systems: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 18(C), pages 246-258.
- Liu, Ming & Saman, Wasim & Bruno, Frank, 2012. "Review on storage materials and thermal performance enhancement techniques for high temperature phase change thermal storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2118-2132.
- Kenisarin, Murat M., 2010. "High-temperature phase change materials for thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(3), pages 955-970, April.
- Cabeza, Luisa F. & Barreneche, Camila & Martorell, Ingrid & Miró, Laia & Sari-Bey, Sana & Fois, Magali & Paksoy, Halime O. & Sahan, Nurten & Weber, Robert & Constantinescu, Mariaella & Anghel, Elena M, 2015. "Unconventional experimental technologies available for phase change materials (PCM) characterization. Part 1. Thermophysical properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 43(C), pages 1399-1414.
- Navarro, Lidia & de Gracia, Alvaro & Niall, Dervilla & Castell, Albert & Browne, Maria & McCormack, Sarah J. & Griffiths, Philip & Cabeza, Luisa F., 2016. "Thermal energy storage in building integrated thermal systems: A review. Part 2. Integration as passive system," Renewable Energy, Elsevier, vol. 85(C), pages 1334-1356.
- Li, Min, 2013. "A nano-graphite/paraffin phase change material with high thermal conductivity," Applied Energy, Elsevier, vol. 106(C), pages 25-30.
- Salunkhe, Pramod B. & Shembekar, Prashant S., 2012. "A review on effect of phase change material encapsulation on the thermal performance of a system," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(8), pages 5603-5616.
- Li, Min & Wu, Zhishen, 2012. "A review of intercalation composite phase change material: Preparation, structure and properties," Renewable and Sustainable Energy Reviews, Elsevier, vol. 16(4), pages 2094-2101.
- Blanco-Rodríguez, P. & Rodríguez-Aseguinolaza, J. & Risueño, E. & Tello, M., 2014. "Thermophysical characterization of Mg–51%Zn eutectic metal alloy: A phase change material for thermal energy storage in direct steam generation applications," Energy, Elsevier, vol. 72(C), pages 414-420.
- Guillot, Stéphanie & Faik, Abdessamad & Rakhmatullin, Aydar & Lambert, Julien & Veron, Emmanuel & Echegut, Patrick & Bessada, Catherine & Calvet, Nicolas & Py, Xavier, 2012. "Corrosion effects between molten salts and thermal storage material for concentrated solar power plants," Applied Energy, Elsevier, vol. 94(C), pages 174-181.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- He, Fang & Wang, Xiaodong & Wu, Dezhen, 2015. "Phase-change characteristics and thermal performance of form-stable n-alkanes/silica composite phase change materials fabricated by sodium silicate precursor," Renewable Energy, Elsevier, vol. 74(C), pages 689-698.
- Fang, Guiyin & Li, Hui & Chen, Zhi & Liu, Xu, 2010. "Preparation and characterization of stearic acid/expanded graphite composites as thermal energy storage materials," Energy, Elsevier, vol. 35(12), pages 4622-4626.
- Jacob, Rhys & Bruno, Frank, 2015. "Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage," Renewable and Sustainable Energy Reviews, Elsevier, vol. 48(C), pages 79-87.
- Choi, Jong Chan & Kim, Sang Done, 1995. "Heat transfer in a latent heat-storage system using MgCl2·6H2O at the melting point," Energy, Elsevier, vol. 20(1), pages 13-25.
- Shukla, Anant & Buddhi, D. & Sawhney, R.L., 2008. "Thermal cycling test of few selected inorganic and organic phase change materials," Renewable Energy, Elsevier, vol. 33(12), pages 2606-2614.
- Jamekhorshid, A. & Sadrameli, S.M. & Farid, M., 2014. "A review of microencapsulation methods of phase change materials (PCMs) as a thermal energy storage (TES) medium," Renewable and Sustainable Energy Reviews, Elsevier, vol. 31(C), pages 531-542.
- Hawlader, M. N. A. & Uddin, M. S. & Khin, Mya Mya, 2003. "Microencapsulated PCM thermal-energy storage system," Applied Energy, Elsevier, vol. 74(1-2), pages 195-202, January.
- Kenisarin, Murat & Mahkamov, Khamid, 2007. "Solar energy storage using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 11(9), pages 1913-1965, December.
- Jegadheeswaran, S. & Pohekar, Sanjay D., 2009. "Performance enhancement in latent heat thermal storage system: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(9), pages 2225-2244, December.
- Chandrasekaran, P. & Cheralathan, M. & Kumaresan, V. & Velraj, R., 2014. "Enhanced heat transfer characteristics of water based copper oxide nanofluid PCM (phase change material) in a spherical capsule during solidification for energy efficient cool thermal storage system," Energy, Elsevier, vol. 72(C), pages 636-642.
- Moreno, Pere & Miró, Laia & Solé, Aran & Barreneche, Camila & Solé, Cristian & Martorell, Ingrid & Cabeza, Luisa F., 2014. "Corrosion of metal and metal alloy containers in contact with phase change materials (PCM) for potential heating and cooling applications," Applied Energy, Elsevier, vol. 125(C), pages 238-245.
- Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Thermal analysis of Al–Si alloys as high-temperature phase-change material and their corrosion properties with ceramic materials," Applied Energy, Elsevier, vol. 163(C), pages 1-8.
- Fan, Liwu & Khodadadi, J.M., 2011. "Thermal conductivity enhancement of phase change materials for thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 15(1), pages 24-46, January.
- Agyenim, Francis & Hewitt, Neil & Eames, Philip & Smyth, Mervyn, 2010. "A review of materials, heat transfer and phase change problem formulation for latent heat thermal energy storage systems (LHTESS)," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(2), pages 615-628, February.
- Oró, Eduard & Miró, Laia & Barreneche, Camila & Martorell, Ingrid & Farid, Mohammed M. & Cabeza, Luisa F., 2013. "Corrosion of metal and polymer containers for use in PCM cold storage," Applied Energy, Elsevier, vol. 109(C), pages 449-453.
- Sharma, Atul & Tyagi, V.V. & Chen, C.R. & Buddhi, D., 2009. "Review on thermal energy storage with phase change materials and applications," Renewable and Sustainable Energy Reviews, Elsevier, vol. 13(2), pages 318-345, February.
- Gil, Antoni & Medrano, Marc & Martorell, Ingrid & Lázaro, Ana & Dolado, Pablo & Zalba, Belén & Cabeza, Luisa F., 2010. "State of the art on high temperature thermal energy storage for power generation. Part 1--Concepts, materials and modellization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(1), pages 31-55, January.
- Fan, Li-Wu & Fang, Xin & Wang, Xiao & Zeng, Yi & Xiao, Yu-Qi & Yu, Zi-Tao & Xu, Xu & Hu, Ya-Cai & Cen, Ke-Fa, 2013. "Effects of various carbon nanofillers on the thermal conductivity and energy storage properties of paraffin-based nanocomposite phase change materials," Applied Energy, Elsevier, vol. 110(C), pages 163-172.
Most related items
These are the items that most often cite the same works as this one and are cited by the same works as this one.- Zeinelabdein, Rami & Omer, Siddig & Gan, Guohui, 2018. "Critical review of latent heat storage systems for free cooling in buildings," Renewable and Sustainable Energy Reviews, Elsevier, vol. 82(P3), pages 2843-2868.
- Ge, Haoshan & Li, Haiyan & Mei, Shengfu & Liu, Jing, 2013. "Low melting point liquid metal as a new class of phase change material: An emerging frontier in energy area," Renewable and Sustainable Energy Reviews, Elsevier, vol. 21(C), pages 331-346.
- Costa, Sol Carolina & Kenisarin, Murat, 2022. "A review of metallic materials for latent heat thermal energy storage: Thermophysical properties, applications, and challenges," Renewable and Sustainable Energy Reviews, Elsevier, vol. 154(C).
- Soares, N. & Bastos, J. & Pereira, L. Dias & Soares, A. & Amaral, A.R. & Asadi, E. & Rodrigues, E. & Lamas, F.B. & Monteiro, H. & Lopes, M.A.R. & Gaspar, A.R., 2017. "A review on current advances in the energy and environmental performance of buildings towards a more sustainable built environment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 77(C), pages 845-860.
- Mao, Qianjun, 2016. "Recent developments in geometrical configurations of thermal energy storage for concentrating solar power plant," Renewable and Sustainable Energy Reviews, Elsevier, vol. 59(C), pages 320-327.
- Khan, Mohammed Mumtaz A. & Saidur, R. & Al-Sulaiman, Fahad A., 2017. "A review for phase change materials (PCMs) in solar absorption refrigeration systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 105-137.
- Kenisarin, Murat & Mahkamov, Khamid, 2016. "Passive thermal control in residential buildings using phase change materials," Renewable and Sustainable Energy Reviews, Elsevier, vol. 55(C), pages 371-398.
- Liu, Yang & Zheng, Ruowei & Li, Ji, 2022. "High latent heat phase change materials (PCMs) with low melting temperature for thermal management and storage of electronic devices and power batteries: Critical review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 168(C).
- Castell, A. & Solé, C., 2015. "An overview on design methodologies for liquid–solid PCM storage systems," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 289-307.
- Huang, Xiang & Alva, Guruprasad & Jia, Yuting & Fang, Guiyin, 2017. "Morphological characterization and applications of phase change materials in thermal energy storage: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 128-145.
- Li, Zhi & Lu, Yiji & Huang, Rui & Chang, Jinwei & Yu, Xiaonan & Jiang, Ruicheng & Yu, Xiaoli & Roskilly, Anthony Paul, 2021. "Applications and technological challenges for heat recovery, storage and utilisation with latent thermal energy storage," Applied Energy, Elsevier, vol. 283(C).
- Fukahori, Ryo & Nomura, Takahiro & Zhu, Chunyu & Sheng, Nan & Okinaka, Noriyuki & Akiyama, Tomohiro, 2016. "Macro-encapsulation of metallic phase change material using cylindrical-type ceramic containers for high-temperature thermal energy storage," Applied Energy, Elsevier, vol. 170(C), pages 324-328.
- Jankowski, Nicholas R. & McCluskey, F. Patrick, 2014. "A review of phase change materials for vehicle component thermal buffering," Applied Energy, Elsevier, vol. 113(C), pages 1525-1561.
- Cárdenas, Bruno & León, Noel, 2013. "High temperature latent heat thermal energy storage: Phase change materials, design considerations and performance enhancement techniques," Renewable and Sustainable Energy Reviews, Elsevier, vol. 27(C), pages 724-737.
- Gustavo Cáceres & Karina Fullenkamp & Macarena Montané & Krzysztof Naplocha & Anna Dmitruk, 2017. "Encapsulated Nitrates Phase Change Material Selection for Use as Thermal Storage and Heat Transfer Materials at High Temperature in Concentrated Solar Power Plants," Energies, MDPI, vol. 10(9), pages 1-21, September.
- Dubey, Abhayjeet kumar & Sun, Jingyi & Choudhary, Tushar & Dash, Madhusmita & Rakshit, Dibakar & Ansari, M Zahid & Ramakrishna, Seeram & Liu, Yong & Nanda, Himansu Sekhar, 2023. "Emerging phase change materials with improved thermal efficiency for a clean and sustainable environment: An approach towards net zero," Renewable and Sustainable Energy Reviews, Elsevier, vol. 182(C).
- Liu, Ming & Steven Tay, N.H. & Bell, Stuart & Belusko, Martin & Jacob, Rhys & Will, Geoffrey & Saman, Wasim & Bruno, Frank, 2016. "Review on concentrating solar power plants and new developments in high temperature thermal energy storage technologies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 53(C), pages 1411-1432.
- Fernandes, D. & Pitié, F. & Cáceres, G. & Baeyens, J., 2012. "Thermal energy storage: “How previous findings determine current research priorities”," Energy, Elsevier, vol. 39(1), pages 246-257.
- Ahmed Hassan & Mohammad Shakeel Laghari & Yasir Rashid, 2016. "Micro-Encapsulated Phase Change Materials: A Review of Encapsulation, Safety and Thermal Characteristics," Sustainability, MDPI, vol. 8(10), pages 1-32, October.
- Xu, Ben & Li, Peiwen & Chan, Cholik, 2015. "Application of phase change materials for thermal energy storage in concentrated solar thermal power plants: A review to recent developments," Applied Energy, Elsevier, vol. 160(C), pages 286-307.
More about this item
Keywords
Thermal energy storage; Phase change materials (PCMs); Heat transfer enhancement; Solar energy;All these keywords.
Statistics
Access and download statisticsCorrections
All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:70:y:2017:i:c:p:1072-1089. See general information about how to correct material in RePEc.
If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.
If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .
If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.
For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .
Please note that corrections may take a couple of weeks to filter through the various RePEc services.