IDEAS home Printed from https://ideas.repec.org/a/eee/rensus/v132y2020ics136403212030215x.html
   My bibliography  Save this article

An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products

Author

Listed:
  • Ong, Victor Zhenquan
  • Wu, Ta Yeong

Abstract

The industrial revolution has caused a tremendous impact on our modern way of life. It shapes the economic, social and culture of many modern societies around the world. However, the world's heavy dependence on fossil fuels has exacerbated the effect of modernisation, causing a detrimental effect to the world climate. Recently, the scientific community has shifted their focus to the valorisation of lignocellulosic biomass as a renewable and clean source of energy. Lignocellulosic biomass is a potential substitute for fossil fuel as it could be transformed to various bio-energy and bio-based products by biorefineries. However, the recalcitrant nature of lignocellulosic biomass hinders the commercialisation at large scale due to the processing difficulties and economically not viable. Hence, ultrasound has been utilised as an auxiliary energy to intensify pretreatments as well as biorefinery processes in the productions of bio-fuels and fine chemicals. In this review, the background information of lignocellulosic biomass and ultrasound is provided. Furthermore, the applications of ultrasound as a complement to existing pretreatments and bioprocessing technologies are discussed by highlighting the importance of mechanoacoustic and sonochemical effect produced by the ultrasound. Lastly, technoeconomic analysis and socioeconomic impact of utilising ultrasound in the biomass processing are elaborated to provide a holistic view on the novel and environmentally friendly green technique.

Suggested Citation

  • Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
  • Handle: RePEc:eee:rensus:v:132:y:2020:i:c:s136403212030215x
    DOI: 10.1016/j.rser.2020.109924
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S136403212030215X
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.rser.2020.109924?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Antonio Lama-Muñoz & María del Mar Contreras & Francisco Espínola & Manuel Moya & Inmaculada Romero & Eulogio Castro, 2019. "Optimization of Oleuropein and Luteolin-7-O-Glucoside Extraction from Olive Leaves by Ultrasound-Assisted Technology," Energies, MDPI, vol. 12(13), pages 1-14, June.
    2. Dong, Cuiying & Chen, Juan & Guan, Ruolin & Li, Xiujin & Xin, Yuefeng, 2018. "Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production," Renewable Energy, Elsevier, vol. 127(C), pages 444-451.
    3. Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
    4. Ho, Mun Chun & Ong, Victor Zhenquan & Wu, Ta Yeong, 2019. "Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 75-86.
    5. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    6. Manoj Kandasamy & Ihsan Hamawand & Leslie Bowtell & Saman Seneweera & Sayan Chakrabarty & Talal Yusaf & Zaidoon Shakoor & Sattar Algayyim & Friederike Eberhard, 2017. "Investigation of Ethanol Production Potential from Lignocellulosic Material without Enzymatic Hydrolysis Using the Ultrasound Technique," Energies, MDPI, vol. 10(1), pages 1-12, January.
    7. Lindmark, Johan & Thorin, Eva & Bel Fdhila, Rebei & Dahlquist, Erik, 2014. "Effects of mixing on the result of anaerobic digestion: Review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 40(C), pages 1030-1047.
    8. Nurudeen Ishola Mohammed & Nassereldeen Ahmed Kabbashi & Abass Alade, 2018. "Significance of Agricultural Residues in Sustainable Biofuel Development," Chapters, in: Anna Aladjadjiyan (ed.), Agricultural Waste and Residues, IntechOpen.
    9. Severo, Ihana Aguiar & Siqueira, Stefania Fortes & Deprá, Mariany Costa & Maroneze, Mariana Manzoni & Zepka, Leila Queiroz & Jacob-Lopes, Eduardo, 2019. "Biodiesel facilities: What can we address to make biorefineries commercially competitive?," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 686-705.
    10. Chen, Wei-Hsin & Ye, Song-Ching & Sheen, Herng-Kuang, 2012. "Hydrolysis characteristics of sugarcane bagasse pretreated by dilute acid solution in a microwave irradiation environment," Applied Energy, Elsevier, vol. 93(C), pages 237-244.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).
    2. Nianze Zhang & Chunyan Tian & Peng Fu & Qiaoxia Yuan & Yuchun Zhang & Zhiyu Li & Weiming Yi, 2022. "The Fractionation of Corn Stalk Components by Hydrothermal Treatment Followed by Ultrasonic Ethanol Extraction," Energies, MDPI, vol. 15(7), pages 1-15, April.
    3. Ji, Qinghua & Yu, Xiaojie & Yagoub, Abu ElGasim A. & Chen, Li & Mustapha, Abdullateef Taiye & Zhou, Cunshan, 2021. "Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment," Renewable Energy, Elsevier, vol. 172(C), pages 304-316.
    4. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    5. Peng, Chuan & Feng, Wei & Zhang, Yanhui & Guo, Shifeng & Yang, Zhile & Liu, Xiangmin & Wang, Tengfei & Zhai, Yunbo, 2021. "Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading," Energy, Elsevier, vol. 219(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    2. Rezania, Shahabaldin & Oryani, Bahareh & Cho, Jinwoo & Talaiekhozani, Amirreza & Sabbagh, Farzaneh & Hashemi, Beshare & Rupani, Parveen Fatemeh & Mohammadi, Ali Akbar, 2020. "Different pretreatment technologies of lignocellulosic biomass for bioethanol production: An overview," Energy, Elsevier, vol. 199(C).
    3. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    4. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    5. George Adrian Ifrim & Mariana Titica & Georgiana Horincar & Alina Antache & Laurențiu Baicu & Marian Barbu & José Luis Guzmán, 2022. "Model Based Optimal Control of the Photosynthetic Growth of Microalgae in a Batch Photobioreactor," Energies, MDPI, vol. 15(18), pages 1-15, September.
    6. Sohoo, Ihsanullah & Ritzkowski, Marco & Heerenklage, Jörn & Kuchta, Kerstin, 2021. "Biochemical methane potential assessment of municipal solid waste generated in Asian cities: A case study of Karachi, Pakistan," Renewable and Sustainable Energy Reviews, Elsevier, vol. 135(C).
    7. Duarte, M. Salomé & Sinisgalli, Erika & Cavaleiro, Ana J. & Bertin, Lorenzo & Alves, M. Madalena & Pereira, M. Alcina, 2021. "Intensification of methane production from waste frying oil in a biogas-lift bioreactor," Renewable Energy, Elsevier, vol. 168(C), pages 1141-1148.
    8. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    9. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    10. Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
    11. Takahiro Nakashima & Keiichiro Ueno & Eisuke Fujita & Shoko Ishikawa, 2020. "Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate," Energies, MDPI, vol. 13(17), pages 1-17, August.
    12. Rodrigo Salvador & Reinalda Blanco Pereira & Gabriel Fernandes Sales & Vanessa Campana Vergani Oliveira & Anthony Halog & Antonio C. Francisco, 2022. "Current Panorama, Practice Gaps, and Recommendations to Accelerate the Transition to a Circular Bioeconomy in Latin America and the Caribbean," Circular Economy and Sustainability, Springer, vol. 2(1), pages 281-312, March.
    13. Vaz, Fernanda Leitão & da Rocha Lins, Jennyfer & Alves Alencar, Bárbara Ribeiro & Silva de Abreu, Íthalo Barbosa & Vidal, Esteban Espinosa & Ribeiro, Ester & Valadares de Sá Barretto Sampaio, Everardo, 2021. "Chemical pretreatment of sugarcane bagasse with liquid fraction recycling," Renewable Energy, Elsevier, vol. 174(C), pages 666-673.
    14. Kumar, Sachin & Dheeran, Pratibha & Singh, Surendra P. & Mishra, Indra M. & Adhikari, Dilip K., 2015. "Kinetic studies of two-stage sulphuric acid hydrolysis of sugarcane bagasse," Renewable Energy, Elsevier, vol. 83(C), pages 850-858.
    15. Hagos, Kiros & Zong, Jianpeng & Li, Dongxue & Liu, Chang & Lu, Xiaohua, 2017. "Anaerobic co-digestion process for biogas production: Progress, challenges and perspectives," Renewable and Sustainable Energy Reviews, Elsevier, vol. 76(C), pages 1485-1496.
    16. Yu, Kai Ling & Chen, Wei-Hsin & Sheen, Herng-Kuang & Chang, Jo-Shu & Lin, Chih-Sheng & Ong, Hwai Chyuan & Show, Pau Loke & Ng, Eng-Poh & Ling, Tau Chuan, 2020. "Production of microalgal biochar and reducing sugar using wet torrefaction with microwave-assisted heating and acid hydrolysis pretreatment," Renewable Energy, Elsevier, vol. 156(C), pages 349-360.
    17. Ocreto, Jherwin B. & Chen, Wei-Hsin & Ubando, Aristotle T. & Park, Young-Kwon & Sharma, Amit Kumar & Ashokkumar, Veeramuthu & Ok, Yong Sik & Kwon, Eilhann E. & Rollon, Analiza P. & De Luna, Mark Danie, 2021. "A critical review on second- and third-generation bioethanol production using microwaved-assisted heating (MAH) pretreatment," Renewable and Sustainable Energy Reviews, Elsevier, vol. 152(C).
    18. Pachón, Elia Ruiz & Vaskan, Pavel & Raman, Jegannathan Kenthorai & Gnansounou, Edgard, 2018. "Transition of a South African sugar mill towards a biorefinery. A feasibility assessment," Applied Energy, Elsevier, vol. 229(C), pages 1-17.
    19. Marcin Dębowski & Izabela Świca & Joanna Kazimierowicz & Marcin Zieliński, 2022. "Large Scale Microalgae Biofuel Technology—Development Perspectives in Light of the Barriers and Limitations," Energies, MDPI, vol. 16(1), pages 1-23, December.
    20. Jegede, A.O. & Zeeman, G. & Bruning, H., 2019. "Evaluation of liquid and solid phase mixing in Chinese dome digesters using residence time distribution (RTD) technique," Renewable Energy, Elsevier, vol. 143(C), pages 501-511.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:rensus:v:132:y:2020:i:c:s136403212030215x. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.elsevier.com/wps/find/journaldescription.cws_home/600126/description#description .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.