IDEAS home Printed from https://ideas.repec.org/a/gam/jsusta/v15y2022i1p168-d1011678.html
   My bibliography  Save this article

From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride

Author

Listed:
  • Małgorzata Hawrot-Paw

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

  • Aleksander Stańczuk

    (Department of Renewable Energy Engineering, West Pomeranian University of Technology in Szczecin, Pawla VI 1, 71-459 Szczecin, Poland)

Abstract

Advanced biofuels can reduce fossil fuel use and the number of harmful compounds released during combustion, by reducing the use of fossil fuels. Lignocellulosic materials, especially waste biomass, are suitable substrates for the production of advanced biofuels. Among the most expensive steps in the production of ethanol is enzyme-based hydrolysis. Using microorganisms can reduce these costs. This study investigated the effectiveness of hydrolyzing three waste lignocellulosic biomass materials (barley straw, oak shavings, spent grains) into ethanol, after biological pretreatment with Trichoderma viride fungi. The number of fermentable sugars obtained from each substrate was subjected to preliminary study, and the correlation between the temperature and fungal activity in the decomposition of lignocellulosic materials was determined. Ethanol was produced by the separate hydrolysis and fermentation (SHF) method. It was found that not all lignocellulosic biomass is suitable to decomposition and hydrolysis in the presence of T. viride . Regardless of the process temperature, the average enzymatic activity of fungi (activity index) ranged from 1.25 to 1.31. 94 mL of distillate, with a 65% ( v / v ) ethanol concentration produced by the hydrolysis and fermentation of the sugars released from the barley straw.

Suggested Citation

  • Małgorzata Hawrot-Paw & Aleksander Stańczuk, 2022. "From Waste Biomass to Cellulosic Ethanol by Separate Hydrolysis and Fermentation (SHF) with Trichoderma viride," Sustainability, MDPI, vol. 15(1), pages 1-10, December.
  • Handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:168-:d:1011678
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/2071-1050/15/1/168/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/2071-1050/15/1/168/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Sujung Heo & Joon Weon Choi, 2019. "Potential and Environmental Impacts of Liquid Biofuel from Agricultural Residues in Thailand," Sustainability, MDPI, vol. 11(5), pages 1-14, March.
    2. Andreas Otto Wagner & Nina Lackner & Mira Mutschlechner & Eva Maria Prem & Rudolf Markt & Paul Illmer, 2018. "Biological Pretreatment Strategies for Second-Generation Lignocellulosic Resources to Enhance Biogas Production," Energies, MDPI, vol. 11(7), pages 1-14, July.
    3. Mariana Ferdeș & Mirela Nicoleta Dincă & Georgiana Moiceanu & Bianca Ștefania Zăbavă & Gigel Paraschiv, 2020. "Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review," Sustainability, MDPI, vol. 12(17), pages 1-26, September.
    4. Isa Hasanov & Merlin Raud & Timo Kikas, 2020. "The Role of Ionic Liquids in the Lignin Separation from Lignocellulosic Biomass," Energies, MDPI, vol. 13(18), pages 1-24, September.
    5. Richard Ahorsu & Francesc Medina & Magda Constantí, 2018. "Significance and Challenges of Biomass as a Suitable Feedstock for Bioenergy and Biochemical Production: A Review," Energies, MDPI, vol. 11(12), pages 1-19, December.
    6. Kumar, Santosh & Singh, Neetu & Prasad, Ram, 2010. "Anhydrous ethanol: A renewable source of energy," Renewable and Sustainable Energy Reviews, Elsevier, vol. 14(7), pages 1830-1844, September.
    Full references (including those not matched with items on IDEAS)

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Sunčica Beluhan & Katarina Mihajlovski & Božidar Šantek & Mirela Ivančić Šantek, 2023. "The Production of Bioethanol from Lignocellulosic Biomass: Pretreatment Methods, Fermentation, and Downstream Processing," Energies, MDPI, vol. 16(19), pages 1-38, October.
    2. Spyridon Achinas & Johan Horjus & Vasileios Achinas & Gerrit Jan Willem Euverink, 2019. "A PESTLE Analysis of Biofuels Energy Industry in Europe," Sustainability, MDPI, vol. 11(21), pages 1-24, October.
    3. Danilo Arcentales-Bastidas & Carla Silva & Angel D. Ramirez, 2022. "The Environmental Profile of Ethanol Derived from Sugarcane in Ecuador: A Life Cycle Assessment Including the Effect of Cogeneration of Electricity in a Sugar Industrial Complex," Energies, MDPI, vol. 15(15), pages 1-24, July.
    4. Tuan Hoang, Anh & Viet Pham, Van, 2021. "2-Methylfuran (MF) as a potential biofuel: A thorough review on the production pathway from biomass, combustion progress, and application in engines," Renewable and Sustainable Energy Reviews, Elsevier, vol. 148(C).
    5. Zhang, Huaiwen & Yao, Yiqing & Deng, Jun & Zhang, Jian-Li & Qiu, Yaojing & Li, Guofu & Liu, Jian, 2022. "Hydrogen production via anaerobic digestion of coal modified by white-rot fungi and its application benefits analysis," Renewable and Sustainable Energy Reviews, Elsevier, vol. 157(C).
    6. Mariana S. T. Amândio & Joana M. Pereira & Jorge M. S. Rocha & Luísa S. Serafim & Ana M. R. B. Xavier, 2022. "Getting Value from Pulp and Paper Industry Wastes: On the Way to Sustainability and Circular Economy," Energies, MDPI, vol. 15(11), pages 1-31, June.
    7. Bogusława Waliszewska & Mieczysław Grzelak & Eliza Gaweł & Agnieszka Spek-Dźwigała & Agnieszka Sieradzka & Wojciech Czekała, 2021. "Chemical Characteristics of Selected Grass Species from Polish Meadows and Their Potential Utilization for Energy Generation Purposes," Energies, MDPI, vol. 14(6), pages 1-14, March.
    8. Alberto Benato & Alarico Macor, 2019. "Italian Biogas Plants: Trend, Subsidies, Cost, Biogas Composition and Engine Emissions," Energies, MDPI, vol. 12(6), pages 1-31, March.
    9. Yichen Liu & James J. Leahy & Jacek Grams & Witold Kwapinski, 2019. "Hydro-Pyrolysis and Catalytic Upgrading of Biomass and Its Hydroxy Residue Fast Pyrolysis Vapors," Energies, MDPI, vol. 12(18), pages 1-18, September.
    10. Musaab O. El-Faroug & Fuwu Yan & Maji Luo & Richard Fiifi Turkson, 2016. "Spark Ignition Engine Combustion, Performance and Emission Products from Hydrous Ethanol and Its Blends with Gasoline," Energies, MDPI, vol. 9(12), pages 1-24, November.
    11. Beata Brzychczyk & Tomasz Hebda & Norbert Pedryc, 2020. "The Influence of Artificial Lighting Systems on the Cultivation of Algae: The Example of Chlorella vulgaris," Energies, MDPI, vol. 13(22), pages 1-14, November.
    12. Saifuddin Nomanbhay & Mei Yin Ong & Kit Wayne Chew & Pau-Loke Show & Man Kee Lam & Wei-Hsin Chen, 2020. "Organic Carbonate Production Utilizing Crude Glycerol Derived as By-Product of Biodiesel Production: A Review," Energies, MDPI, vol. 13(6), pages 1-23, March.
    13. Roksana Muzyka & Szymon Sobek & Mariusz Dudziak & Miloud Ouadi & Marcin Sajdak, 2023. "A Comparative Analysis of Waste Biomass Pyrolysis in Py-GC-MS and Fixed-Bed Reactors," Energies, MDPI, vol. 16(8), pages 1-15, April.
    14. Yanli Fu & Jie Zhang & Tianzhu Guan, 2023. "High-Value Utilization of Corn Straw: From Waste to Wealth," Sustainability, MDPI, vol. 15(19), pages 1-14, October.
    15. Takahiro Nakashima & Keiichiro Ueno & Eisuke Fujita & Shoko Ishikawa, 2020. "Evaluation of Polyethylene Mulching and Sugarcane Cultivar on Energy Inputs and Greenhouse Gas Emissions for Ethanol Production in a Temperate Climate," Energies, MDPI, vol. 13(17), pages 1-17, August.
    16. Ndayisenga, Fabrice & Yu, Zhisheng & Zheng, Jianzhong & Wang, Bobo & Liang, Hongxia & Phulpoto, Irfan Ali & Habiyakare, Telesphore & Zhou, Dandan, 2021. "Microbial electrohydrogenesis cell and dark fermentation integrated system enhances biohydrogen production from lignocellulosic agricultural wastes: Substrate pretreatment towards optimization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    17. Tabatabaei, Meisam & Aghbashlo, Mortaza & Valijanian, Elena & Kazemi Shariat Panahi, Hamed & Nizami, Abdul-Sattar & Ghanavati, Hossein & Sulaiman, Alawi & Mirmohamadsadeghi, Safoora & Karimi, Keikhosr, 2020. "A comprehensive review on recent biological innovations to improve biogas production, Part 1: Upstream strategies," Renewable Energy, Elsevier, vol. 146(C), pages 1204-1220.
    18. Daissy Lorena Restrepo-Serna & Jimmy Anderson Martínez-Ruano & Carlos Ariel Cardona-Alzate, 2018. "Energy Efficiency of Biorefinery Schemes Using Sugarcane Bagasse as Raw Material," Energies, MDPI, vol. 11(12), pages 1-12, December.
    19. Spyridon Achinas & Gerrit Jan Willem Euverink, 2019. "Effect of Combined Inoculation on Biogas Production from Hardly Degradable Material," Energies, MDPI, vol. 12(2), pages 1-13, January.
    20. Mattias, Gaglio & Elena, Tamburini & Giuseppe, Castaldelli & Anna, Fano Elisa, 2021. "Modeling the ecosystem service of agricultural residues provision for bioenergy production: A potential application in the Emilia-Romagna region (Italy)," Ecological Modelling, Elsevier, vol. 451(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jsusta:v:15:y:2022:i:1:p:168-:d:1011678. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.