IDEAS home Printed from https://ideas.repec.org/a/gam/jeners/v8y2015i5p4096-4117d49333.html
   My bibliography  Save this article

Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover

Author

Listed:
  • Lili Zhao

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Xiliang Zhang

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Jie Xu

    (Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, Guangdong, China)

  • Xunmin Ou

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

  • Shiyan Chang

    (Laboratory of Low Carbon Energy, Tsinghua University, Beijing 100084, China)

  • Maorong Wu

    (Institute of Energy, Environment and Economy, Tsinghua University, Beijing 100084, China)

Abstract

Lignocellulosic biomass-based ethanol is categorized as 2 nd generation bioethanol in the advanced biofuel portfolio. To make sound incentive policy proposals for the Chinese government and to develop guidance for research and development and industrialization of the technology, the paper reports careful techno-economic and sensitivity analyses performed to estimate the current competitiveness of the bioethanol and identify key components which have the greatest impact on its plant-gate price (PGP). Two models were developed for the research, including the Bioethanol PGP Assessment Model (BPAM) and the Feedstock Cost Estimation Model (FCEM). Results show that the PGP of the bioethanol ranges $4.68–$6.05/gal (9,550–12,356 yuan/t). The key components that contribute most to bioethanol PGP include the conversion rate of cellulose to glucose, the ratio of five-carbon sugars converted to ethanol, feedstock cost, and enzyme loading, etc . Lignocellulosic ethanol is currently unable to compete with fossil gasoline, therefore incentive policies are necessary to promote its development. It is suggested that the consumption tax be exempted, the value added tax (VAT) be refunded upon collection, and feed-in tariff for excess electricity (byproduct) be implemented to facilitate the industrialization of the technology. A minimum direct subsidy of $1.20/gal EtOH (2,500 yuan/t EtOH) is also proposed for consideration.

Suggested Citation

  • Lili Zhao & Xiliang Zhang & Jie Xu & Xunmin Ou & Shiyan Chang & Maorong Wu, 2015. "Techno-Economic Analysis of Bioethanol Production from Lignocellulosic Biomass in China: Dilute-Acid Pretreatment and Enzymatic Hydrolysis of Corn Stover," Energies, MDPI, vol. 8(5), pages 1-22, May.
  • Handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4096-4117:d:49333
    as

    Download full text from publisher

    File URL: https://www.mdpi.com/1996-1073/8/5/4096/pdf
    Download Restriction: no

    File URL: https://www.mdpi.com/1996-1073/8/5/4096/
    Download Restriction: no
    ---><---

    References listed on IDEAS

    as
    1. Ma, Linwei & Fu, Feng & Li, Zheng & Liu, Pei, 2012. "Oil development in China: Current status and future trends," Energy Policy, Elsevier, vol. 45(C), pages 43-53.
    2. Ou, Xunmin & Zhang, Xiliang & Chang, Shiyan & Guo, Qingfang, 2009. "Energy consumption and GHG emissions of six biofuel pathways by LCA in (the) People's Republic of China," Applied Energy, Elsevier, vol. 86(Supplemen), pages 197-208, November.
    3. Martines-Filho, Joao Gomes & Burnquist, Heloisa Lee & Vian, Carlos Eduardo de Freitas, 2006. "Bioenergy and the Rise of Sugarcane-Based Ethanol in Brazil," Choices: The Magazine of Food, Farm, and Resource Issues, Agricultural and Applied Economics Association, vol. 21(2), pages 1-6.
    4. Cavalcanti, Marcelo & Szklo, Alexandre & Machado, Giovani & Arouca, Maurício, 2012. "Taxation of automobile fuels in Brazil: Does ethanol need tax incentives to be competitive and if so, to what extent can they be justified by the balance of GHG emissions?," Renewable Energy, Elsevier, vol. 37(1), pages 9-18.
    5. Chang, Shiyan & Zhao, Lili & Timilsina, Govinda R. & Zhang, Xiliang, 2012. "Biofuels development in China: Technology options and policies needed to meet the 2020 target," Energy Policy, Elsevier, vol. 51(C), pages 64-79.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Mohapatra, Sonali & Mishra, Chinmaya & Behera, Sudhansu S. & Thatoi, Hrudayanath, 2017. "Application of pretreatment, fermentation and molecular techniques for enhancing bioethanol production from grass biomass – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 78(C), pages 1007-1032.
    2. Rodica Niculescu & Adrian Clenci & Victor Iorga-Siman, 2019. "Review on the Use of Diesel–Biodiesel–Alcohol Blends in Compression Ignition Engines," Energies, MDPI, vol. 12(7), pages 1-41, March.
    3. Lane, Blake & Kinnon, Michael Mac & Shaffer, Brendan & Samuelsen, Scott, 2022. "Deployment planning tool for environmentally sensitive heavy-duty vehicles and fueling infrastructure," Energy Policy, Elsevier, vol. 171(C).
    4. Yu, Jianming & Chen, Sitong & Yu, Yang & Zhang, Chengcheng & Jin, Mingjie, 2024. "Influence of feedstock selection on cellulosic ethanol production based on densified biomass with calcium hydroxide and regular steam pretreatment," Renewable Energy, Elsevier, vol. 227(C).
    5. Sylvia Haus & Lovisa Björnsson & Pål Börjesson, 2020. "Lignocellulosic Ethanol in a Greenhouse Gas Emission Reduction Obligation System—A Case Study of Swedish Sawdust Based-Ethanol Production," Energies, MDPI, vol. 13(5), pages 1-15, February.
    6. Shizhong Song & Pei Liu & Jing Xu & Linwei Ma & Chinhao Chong & Min He & Xianzheng Huang & Zheng Li & Weidou Ni, 2016. "An Economic and Policy Analysis of a District Heating System Using Corn Straw Densified Fuel: A Case Study in Nong’an County in Jilin Province, China," Energies, MDPI, vol. 10(1), pages 1-22, December.
    7. Song, Shizhong & Liu, Pei & Xu, Jing & Chong, Chinhao & Huang, Xianzheng & Ma, Linwei & Li, Zheng & Ni, Weidou, 2017. "Life cycle assessment and economic evaluation of pellet fuel from corn straw in China: A case study in Jilin Province," Energy, Elsevier, vol. 130(C), pages 373-381.
    8. Poveda-Giraldo, Jhonny Alejandro & Solarte-Toro, Juan Camilo & Cardona Alzate, Carlos Ariel, 2021. "The potential use of lignin as a platform product in biorefineries: A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 138(C).
    9. Zhao, Lili & Ou, Xunmin & Chang, Shiyan, 2016. "Life-cycle greenhouse gas emission and energy use of bioethanol produced from corn stover in China: Current perspectives and future prospectives," Energy, Elsevier, vol. 115(P1), pages 303-313.
    10. Cruce, Jesse R. & Quinn, Jason C., 2019. "Economic viability of multiple algal biorefining pathways and the impact of public policies," Applied Energy, Elsevier, vol. 233, pages 735-746.
    11. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    12. Jenkins, Timothy L. & Jin, Enze & Sutherland, John W., 2020. "Effect of harvest region shape, biomass yield, and plant location on optimal biofuel facility size," Forest Policy and Economics, Elsevier, vol. 111(C).
    13. Tamara Llano & Natalia Quijorna & Alberto Coz, 2017. "Detoxification of a Lignocellulosic Waste from a Pulp Mill to Enhance Its Fermentation Prospects," Energies, MDPI, vol. 10(3), pages 1-18, March.
    14. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    15. Rui Wang & Yanyou Wu & Deke Xing & Hongtao Hang & Xiaolin Xie & Xiuqun Yang & Kaiyan Zhang & Sen Rao, 2017. "Biomass Production of Three Biofuel Energy Plants’ Use of a New Carbon Resource by Carbonic Anhydrase in Simulated Karst Soils: Mechanism and Capacity," Energies, MDPI, vol. 10(9), pages 1-14, September.
    16. Puengprasert, Punika & Chalobol, Tanida & Sinbuathong, Nusara & Srinophakhun, Penjit & Thanapimmetha, Anusith & Liu, Chen-Guang & Zhao, Xin-Qing & Sakdaronnarong, Chularat, 2020. "A combined cellulosic and starchy ethanol and biomethane production with stillage recycle and respective cost analysis," Renewable Energy, Elsevier, vol. 157(C), pages 444-455.
    17. Hossain, Nazia & Zaini, Juliana & Indra Mahlia, Teuku Meurah, 2019. "Life cycle assessment, energy balance and sensitivity analysis of bioethanol production from microalgae in a tropical country," Renewable and Sustainable Energy Reviews, Elsevier, vol. 115(C).
    18. Zhao, Xuebing & Liu, Dehua, 2019. "Multi-products co-production improves the economic feasibility of cellulosic ethanol: A case of Formiline pretreatment-based biorefining," Applied Energy, Elsevier, vol. 250(C), pages 229-244.
    19. Manoj Kandasamy & Ihsan Hamawand & Leslie Bowtell & Saman Seneweera & Sayan Chakrabarty & Talal Yusaf & Zaidoon Shakoor & Sattar Algayyim & Friederike Eberhard, 2017. "Investigation of Ethanol Production Potential from Lignocellulosic Material without Enzymatic Hydrolysis Using the Ultrasound Technique," Energies, MDPI, vol. 10(1), pages 1-12, January.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhao, Lili & Chang, Shiyan & Wang, Hailin & Zhang, Xiliang & Ou, Xunmin & Wang, Baiyu & Wu, Maorong, 2015. "Long-term projections of liquid biofuels in China: Uncertainties and potential benefits," Energy, Elsevier, vol. 83(C), pages 37-54.
    2. Li, Weiqi & Dai, Yaping & Ma, Linwei & Hao, Han & Lu, Haiyan & Albinson, Rosemary & Li, Zheng, 2015. "Oil-saving pathways until 2030 for road freight transportation in China based on a cost-optimization model," Energy, Elsevier, vol. 86(C), pages 369-384.
    3. Ren, Jingzheng & Dong, Liang & Sun, Lu & Evan Goodsite, Michael & Dong, Lichun & Luo, Xiao & Sovacool, Benjamin K., 2015. "“Supply push” or “demand pull?”: Strategic recommendations for the responsible development of biofuel in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 52(C), pages 382-392.
    4. Iriarte, Alfredo & Rieradevall, Joan & Gabarrell, Xavier, 2012. "Transition towards a more environmentally sustainable biodiesel in South America: The case of Chile," Applied Energy, Elsevier, vol. 91(1), pages 263-273.
    5. Rubio Rodríguez, M.A. & Ruyck, J. De & Díaz, P. Roque & Verma, V.K. & Bram, S., 2011. "An LCA based indicator for evaluation of alternative energy routes," Applied Energy, Elsevier, vol. 88(3), pages 630-635, March.
    6. Feng, Changling & E, Jiaqiang & Kou, Chuanfu & Han, Dandan & Han, Chang & Tan, Yan & Deng, Yuanwang, 2024. "Investigation on the hydrocarbon adsorption performance enhancement of the ZSM-5 zeolite with different Si/Al ratio in the cold start process of the gasoline engine," Energy, Elsevier, vol. 300(C).
    7. Bilgili, Faik & Mugaloglu, Erhan & Koçak, Emrah, 2018. "The impact of oil prices on CO2 emissions in China: A Wavelet coherence approach," MPRA Paper 90170, University Library of Munich, Germany.
    8. Xunmin Ou & Xiaoyu Yan & Xu Zhang & Xiliang Zhang, 2013. "Life-Cycle Energy Use and Greenhouse Gas Emissions Analysis for Bio-Liquid Jet Fuel from Open Pond-Based Micro-Algae under China Conditions," Energies, MDPI, vol. 6(9), pages 1-27, September.
    9. Deborah Bentivoglio & Adele Finco & Mirian Rumenos Piedade Bacchi, 2016. "Interdependencies between Biofuel, Fuel and Food Prices: The Case of the Brazilian Ethanol Market," Energies, MDPI, vol. 9(6), pages 1-16, June.
    10. Wang, Hongxia & Fang, Hong & Yu, Xueying & Wang, Ke, 2015. "Development of natural gas vehicles in China: An assessment of enabling factors and barriers," Energy Policy, Elsevier, vol. 85(C), pages 80-93.
    11. Wang, Shenhao & Zhao, Jinhua, 2017. "The distributional effects of lotteries and auctions—License plate regulations in Guangzhou," Transportation Research Part A: Policy and Practice, Elsevier, vol. 106(C), pages 473-483.
    12. Hertel, Thomas W. & Tyner, Wallace E. & Birur, Dileep K., 2008. "Biofuels for all? Understanding the Global Impacts of Multinational Mandates," 2008 Annual Meeting, July 27-29, 2008, Orlando, Florida 6526, American Agricultural Economics Association (New Name 2008: Agricultural and Applied Economics Association).
    13. Antonakakis, Nikolaos & Chatziantoniou, Ioannis & Filis, George, 2017. "Oil shocks and stock markets: Dynamic connectedness under the prism of recent geopolitical and economic unrest," International Review of Financial Analysis, Elsevier, vol. 50(C), pages 1-26.
    14. Zhao, Yuanhao & Wang, Changbo & Zhang, Lixiao & Chang, Yuan & Hao, Yan, 2021. "Converting waste cooking oil to biodiesel in China: Environmental impacts and economic feasibility," Renewable and Sustainable Energy Reviews, Elsevier, vol. 140(C).
    15. Michieka, Nyakundi M. & Fletcher, Jerald & Burnett, Wesley, 2013. "An empirical analysis of the role of China’s exports on CO2 emissions," Applied Energy, Elsevier, vol. 104(C), pages 258-267.
    16. Xu, Yang-Jie & Li, Guo-Xiu & Sun, Zuo-Yu, 2016. "Development of biodiesel industry in China: Upon the terms of production and consumption," Renewable and Sustainable Energy Reviews, Elsevier, vol. 54(C), pages 318-330.
    17. Seber, Gonca & Escobar, Neus & Valin, Hugo & Malina, Robert, 2022. "Uncertainty in life cycle greenhouse gas emissions of sustainable aviation fuels from vegetable oils," Renewable and Sustainable Energy Reviews, Elsevier, vol. 170(C).
    18. Hira, Anil & de Oliveira, Luiz Guilherme, 2009. "No substitute for oil? How Brazil developed its ethanol industry," Energy Policy, Elsevier, vol. 37(6), pages 2450-2456, June.
    19. Ozoegwu, C.G. & Eze, C. & Onwosi, C.O. & Mgbemene, C.A. & Ozor, P.A., 2017. "Biomass and bioenergy potential of cassava waste in Nigeria: Estimations based partly on rural-level garri processing case studies," Renewable and Sustainable Energy Reviews, Elsevier, vol. 72(C), pages 625-638.
    20. Ji, Li-Qun, 2015. "An assessment of agricultural residue resources for liquid biofuel production in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 44(C), pages 561-575.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:gam:jeners:v:8:y:2015:i:5:p:4096-4117:d:49333. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: MDPI Indexing Manager (email available below). General contact details of provider: https://www.mdpi.com .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.