IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v172y2021icp304-316.html
   My bibliography  Save this article

Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment

Author

Listed:
  • Ji, Qinghua
  • Yu, Xiaojie
  • Yagoub, Abu ElGasim A.
  • Chen, Li
  • Mustapha, Abdullateef Taiye
  • Zhou, Cunshan

Abstract

A low-cost and green biorefinery will increase the economy and revenue from lignocellulosic biomass. This study demonstrated the effect of two-pot sequential pretreatment, comprising of ultrasound ethanol (USEL) synergized ternary deep eutectic solvent (TDES, choline chloride: glycerol: FeCl3·6H2O), with the aim to investigate the effects of USEL, TDES, and USEL + TDES pretreatments on enhancing delignification of sugarcane bagasse (SCB). The results showed that under the optimum TDES pretreatment conditions (FeCl3·6H2O, 120 °C, 3 h), the cellulose content and lignin removal rate (LRR) of SCB reached 47.67 and 82.71%, respectively. Under the optimum synergy conditions (USEL conditions: 100% ethanol, 20 + 28 + 40 kHz, 240 W, 60 min; TDES conditions: FeCl3·6H2O, 120 °C, 3 h), the cellulose content and LRR of SCB reached 66.17 and 86.39%, respectively. After enzymatic hydrolysis, the SCB pretreated with USEL + TDES shows a saccharification rate of 90.31%, which was substantially higher than that of the SCB pretreated with TDES alone (85.68%). X-ray diffraction, particle size, brunauer-emmet-teller, scanning electron microscopy, and optical microscopy analyses were conducted to confirm the efficiency of USEL + TDES on pretreating SCB. Meanwhile, 2D-HSQC NMR analysis revealed that regenerated lignin exhibited well-preserved structures (β-O-4, β-β linkages), making it suitable for depolymerization into monoaromatic compounds. Overall, this work demonstrated that biomass pretreatment with the USEL + TDES was promising for a low-cost biorefinery to efficiently fractionate lignocellulosic biomass into glucose and high-quality lignin with tailored chemical structures.

Suggested Citation

  • Ji, Qinghua & Yu, Xiaojie & Yagoub, Abu ElGasim A. & Chen, Li & Mustapha, Abdullateef Taiye & Zhou, Cunshan, 2021. "Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment," Renewable Energy, Elsevier, vol. 172(C), pages 304-316.
  • Handle: RePEc:eee:renene:v:172:y:2021:i:c:p:304-316
    DOI: 10.1016/j.renene.2021.03.050
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121004067
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.03.050?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Dong, Cuiying & Chen, Juan & Guan, Ruolin & Li, Xiujin & Xin, Yuefeng, 2018. "Dual-frequency ultrasound combined with alkali pretreatment of corn stalk for enhanced biogas production," Renewable Energy, Elsevier, vol. 127(C), pages 444-451.
    2. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    3. Ji, Qinghua & Jiang, Haonan & Yu, Xiaojie & Yagoub, Abu El-Gasim A. & Zhou, Cunshan & Chen, Li, 2020. "Efficient and environmentally-friendly dehydration of fructose and treatments of bagasse under the supercritical CO2 system," Renewable Energy, Elsevier, vol. 162(C), pages 1-12.
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. Tu, Shanshan & Yu, Xiaojie & Ji, Qinghua & Ma, Qiannan & Zhou, Cunshan & Chen, Li & Okonkwo, Clinton Emeka, 2022. "Exploration of lower critical solution temperature DES in a thermoreversible aqueous two-phase system for integrating glucose conversion and 5-HMF separation," Renewable Energy, Elsevier, vol. 189(C), pages 392-401.
    2. You, Shuai & Zhang, Wen-Xin & Ge, Yan & Lu, Yu & Herman, Richard Ansah & Chen, Yi-Wen & Zhang, Sheng & Hu, Yang-Hao & Bai, Zhi-Yuan & Wang, Jun, 2023. "Improvement of GH10 xylanase activity based on channel hindrance elimination strategy for better synergistic cellulase to enhance green bio-energy production," Renewable Energy, Elsevier, vol. 215(C).
    3. Lu, Aiping & Yu, Xiaojie & Chen, Li & Okonkwo, Clinton Emeka & Otu, Phyllis & Zhou, Cunshan & Lu, Qiaomin & Sun, Qiaolan, 2023. "Development of novel ternary deep eutectic pretreatment solvents from lignin-derived phenol, and its efficiency in delignification and enzymatic hydrolysis of peanut shells," Renewable Energy, Elsevier, vol. 205(C), pages 617-626.
    4. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    5. Ouyang, Denghao & Chen, Hongmei & Liu, Nan & Zhang, Jingzhi & Zhao, Xuebing, 2022. "Insight into the negative effects of lignin on enzymatic hydrolysis of cellulose for biofuel production via selective oxidative delignification and inhibitive actions of phenolic model compounds," Renewable Energy, Elsevier, vol. 185(C), pages 196-207.
    6. Fan, Meishan & Lei, Ming & Xie, Jun & Zhang, Hongdan, 2022. "Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production," Renewable Energy, Elsevier, vol. 186(C), pages 646-655.
    7. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    8. Xie, Junxian & Cheng, Zheng & Zhu, Shiyun & Xu, Jun, 2022. "Lewis base enhanced neutral deep eutectic solvent pretreatment for enzymatic hydrolysis of corn straw and lignin characterization," Renewable Energy, Elsevier, vol. 188(C), pages 320-328.

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Nianze Zhang & Chunyan Tian & Peng Fu & Qiaoxia Yuan & Yuchun Zhang & Zhiyu Li & Weiming Yi, 2022. "The Fractionation of Corn Stalk Components by Hydrothermal Treatment Followed by Ultrasonic Ethanol Extraction," Energies, MDPI, vol. 15(7), pages 1-15, April.
    2. Nahak, B.K. & Preetam, S. & Sharma, Deepa & Shukla, S.K. & Syväjärvi, Mikael & Toncu, Dana-Cristina & Tiwari, Ashutosh, 2022. "Advancements in net-zero pertinency of lignocellulosic biomass for climate neutral energy production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 161(C).
    3. Fang Huang & Weizun Li & Qidong Hou & Meiting Ju, 2019. "Enhanced CH 4 Production from Corn-Stalk Pyrolysis Using Ni-5CeO 2 /MCM-41 as a Catalyst," Energies, MDPI, vol. 12(5), pages 1-12, February.
    4. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    5. Peng, Chuan & Feng, Wei & Zhang, Yanhui & Guo, Shifeng & Yang, Zhile & Liu, Xiangmin & Wang, Tengfei & Zhai, Yunbo, 2021. "Low temperature co-pyrolysis of food waste with PVC-derived char: Products distributions, char properties and mechanism of bio-oil upgrading," Energy, Elsevier, vol. 219(C).
    6. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    7. Panigrahi, Sagarika & Dubey, Brajesh K., 2019. "A critical review on operating parameters and strategies to improve the biogas yield from anaerobic digestion of organic fraction of municipal solid waste," Renewable Energy, Elsevier, vol. 143(C), pages 779-797.
    8. Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
    9. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:172:y:2021:i:c:p:304-316. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.