IDEAS home Printed from https://ideas.repec.org/a/eee/renene/v182y2022icp285-295.html
   My bibliography  Save this article

Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis

Author

Listed:
  • Tnah, Shen Khang
  • Wu, Ta Yeong
  • Ting, Dennis Chiong Chung
  • Chow, Han Ket
  • Shak, Katrina Pui Yee
  • Subramonian, Wennie
  • Procentese, Alessandra
  • Cheng, Chin Kui
  • Teoh, Wen Hui
  • Md. Jahim, Jamaliah

Abstract

Choline chloride (ChCl) and various monocarboxylic acids (monochloroacetic acid, MCA; dichloroacetic acid, DCA; trichloroacetic acid, TCA) with increasing numbers of substituted chlorine atoms were utilized for the pretreatment of oil palm fronds (OPFs). To the best of our knowledge, this study was the first attempt to utilize these three novel solvents in biomass pretreatment. The result of ChCl:TCA was excluded due to instability in conducting the pretreatment. Under the recommended conditions of 120 °C and 60 min, similar delignification percentages of 75.96% and 74.89% were obtained for ChCl:MCA and ChCl:DCA, respectively. Enzymatic hydrolysis of the pretreated OPFs was demonstrated after pretreatment. By using ChCl:DCA, a shorter duration of enzymatic hydrolysis (24 h) enabled glucan conversion of pretreated OPFs up to 89%. Although a longer duration of 72 h was imposed, glucan conversion of only 82% could be obtained by using ChCl:MCA. Thus, a solvent with a higher number of chlorine atoms (ChCl:DCA) could lead to more effective enzymatic hydrolysis. The results were compared to the literature findings, and ChCl:DCA was determined to be one of the most effective solvents for biomass pretreatment under relatively mild conditions.

Suggested Citation

  • Tnah, Shen Khang & Wu, Ta Yeong & Ting, Dennis Chiong Chung & Chow, Han Ket & Shak, Katrina Pui Yee & Subramonian, Wennie & Procentese, Alessandra & Cheng, Chin Kui & Teoh, Wen Hui & Md. Jahim, Jamali, 2022. "Effect of chlorine atoms in choline chloride-monocarboxylic acid for the pretreatment of oil palm fronds and enzymatic hydrolysis," Renewable Energy, Elsevier, vol. 182(C), pages 285-295.
  • Handle: RePEc:eee:renene:v:182:y:2022:i:c:p:285-295
    DOI: 10.1016/j.renene.2021.09.068
    as

    Download full text from publisher

    File URL: http://www.sciencedirect.com/science/article/pii/S0960148121013823
    Download Restriction: Full text for ScienceDirect subscribers only

    File URL: https://libkey.io/10.1016/j.renene.2021.09.068?utm_source=ideas
    LibKey link: if access is restricted and if your library uses this service, LibKey will redirect you to where you can use your library subscription to access this item
    ---><---

    As the access to this document is restricted, you may want to search for a different version of it.

    References listed on IDEAS

    as
    1. Ho, Mun Chun & Ong, Victor Zhenquan & Wu, Ta Yeong, 2019. "Potential use of alkaline hydrogen peroxide in lignocellulosic biomass pretreatment and valorization – A review," Renewable and Sustainable Energy Reviews, Elsevier, vol. 112(C), pages 75-86.
    2. Anu, & Kumar, Anil & Rapoport, Alexander & Kunze, Gotthard & Kumar, Sanjeev & Singh, Davender & Singh, Bijender, 2020. "Multifarious pretreatment strategies for the lignocellulosic substrates for the generation of renewable and sustainable biofuels: A review," Renewable Energy, Elsevier, vol. 160(C), pages 1228-1252.
    3. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    4. Ji, Qinghua & Yu, Xiaojie & Yagoub, Abu ElGasim A. & Chen, Li & Mustapha, Abdullateef Taiye & Zhou, Cunshan, 2021. "Enhancement of lignin removal and enzymolysis of sugarcane bagasse by ultrasound-assisted ethanol synergized deep eutectic solvent pretreatment," Renewable Energy, Elsevier, vol. 172(C), pages 304-316.
    5. Zulkefli, Syarilaida & Abdulmalek, Emilia & Abdul Rahman, Mohd. Basyaruddin, 2017. "Pretreatment of oil palm trunk in deep eutectic solvent and optimization of enzymatic hydrolysis of pretreated oil palm trunk," Renewable Energy, Elsevier, vol. 107(C), pages 36-41.
    6. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    Full references (including those not matched with items on IDEAS)

    Citations

    Citations are extracted by the CitEc Project, subscribe to its RSS feed for this item.
    as


    Cited by:

    1. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).

    Most related items

    These are the items that most often cite the same works as this one and are cited by the same works as this one.
    1. Zhou, Man & Fakayode, Olugbenga Abiola & Ahmed Yagoub, Abu ElGasim & Ji, Qinghua & Zhou, Cunshan, 2022. "Lignin fractionation from lignocellulosic biomass using deep eutectic solvents and its valorization," Renewable and Sustainable Energy Reviews, Elsevier, vol. 156(C).
    2. New, Eng Kein & Wu, Ta Yeong & Tnah, Shen Khang & Procentese, Alessandra & Cheng, Chin Kui, 2023. "Pretreatment and sugar recovery of oil palm fronds using choline chloride:calcium chloride hexahydrate integrated with metal chloride," Energy, Elsevier, vol. 277(C).
    3. You, Shuai & Zhang, Wen-Xin & Ge, Yan & Lu, Yu & Herman, Richard Ansah & Chen, Yi-Wen & Zhang, Sheng & Hu, Yang-Hao & Bai, Zhi-Yuan & Wang, Jun, 2023. "Improvement of GH10 xylanase activity based on channel hindrance elimination strategy for better synergistic cellulase to enhance green bio-energy production," Renewable Energy, Elsevier, vol. 215(C).
    4. Fan, Meishan & Lei, Ming & Xie, Jun & Zhang, Hongdan, 2022. "Further insights into the solubilization and surface modification of lignin on enzymatic hydrolysis and ethanol production," Renewable Energy, Elsevier, vol. 186(C), pages 646-655.
    5. Yao, Junwei & Xie, Xiaobao & Shi, Qingshan, 2021. "Improving enzymatic saccharification of Chinese silvergrass by FeCl3-catalyzed γ-valerolactone/water pretreatment system," Renewable Energy, Elsevier, vol. 177(C), pages 853-858.
    6. Aghili Mehrizi, Amirreza & Tangestaninejad, Shahram & Denayer, Joeri F.M. & Karimi, Keikhosro & Shafiei, Marzieh, 2023. "The critical impacts of anion and cosolvent on morpholinium ionic liquid pretreatment for efficient renewable energy production from triticale straw," Renewable Energy, Elsevier, vol. 202(C), pages 686-698.
    7. Wu, Wei & Taipabu, Muhammad Ikhsan & Chang, Wei-Chen & Viswanathan, Karthickeyan & Xie, Yi-Lin & Kuo, Po-Chih, 2022. "Economic dispatch of torrefied biomass polygeneration systems considering power/SNG grid demands," Renewable Energy, Elsevier, vol. 196(C), pages 707-719.
    8. Mamata Singhvi & Smita Zinjarde & Beom-Soo Kim, 2022. "Sustainable Strategies for the Conversion of Lignocellulosic Materials into Biohydrogen: Challenges and Solutions toward Carbon Neutrality," Energies, MDPI, vol. 15(23), pages 1-13, November.
    9. Ong, Victor Zhenquan & Wu, Ta Yeong, 2020. "An application of ultrasonication in lignocellulosic biomass valorisation into bio-energy and bio-based products," Renewable and Sustainable Energy Reviews, Elsevier, vol. 132(C).
    10. Shao, Weilan & Wang, Qiang & Rupani, Parveen Fatemeh & Krishnan, Santhana & Ahmad, Fiaz & Rezania, Shahabaldin & Rashid, Muhammad Adnan & Sha, Chong & Md Din, Mohd Fadhil, 2020. "Biohydrogen production via thermophilic fermentation: A prospective application of Thermotoga species," Energy, Elsevier, vol. 197(C).
    11. Gomes, Michelle Garcia & Paranhos, Aline Gomes de Oliveira & Camargos, Adonai Bruneli & Baêta, Bruno Eduardo Lobo & Baffi, Milla Alves & Gurgel, Leandro Vinícius Alves & Pasquini, Daniel, 2022. "Pretreatment of sugarcane bagasse with dilute citric acid and enzymatic hydrolysis: Use of black liquor and solid fraction for biogas production," Renewable Energy, Elsevier, vol. 191(C), pages 428-438.
    12. Adamu, Haruna & Bello, Usman & Yuguda, Abubakar Umar & Tafida, Usman Ibrahim & Jalam, Abdullahi Mohammad & Sabo, Ahmed & Qamar, Mohammad, 2023. "Production processes, techno-economic and policy challenges of bioenergy production from fruit and vegetable wastes," Renewable and Sustainable Energy Reviews, Elsevier, vol. 186(C).
    13. Wu, Bo & Wang, Yan-Wei & Dai, Yong-Hua & Song, Chao & Zhu, Qi-Li & Qin, Han & Tan, Fu-Rong & Chen, Han-Cheng & Dai, Li-Chun & Hu, Guo-Quan & He, Ming-Xiong, 2021. "Current status and future prospective of bio-ethanol industry in China," Renewable and Sustainable Energy Reviews, Elsevier, vol. 145(C).
    14. Yang, Luan & Zheng, Tianran & Huang, Chen & Yao, Jianfeng, 2022. "Using deep eutectic solvent pretreatment for enhanced enzymatic saccharification and lignin utilization of masson pine," Renewable Energy, Elsevier, vol. 195(C), pages 681-687.
    15. Lee, Cornelius Basil Tien Loong & Wu, Ta Yeong, 2021. "A review on solvent systems for furfural production from lignocellulosic biomass," Renewable and Sustainable Energy Reviews, Elsevier, vol. 137(C).
    16. Tu, Shanshan & Yu, Xiaojie & Ji, Qinghua & Ma, Qiannan & Zhou, Cunshan & Chen, Li & Okonkwo, Clinton Emeka, 2022. "Exploration of lower critical solution temperature DES in a thermoreversible aqueous two-phase system for integrating glucose conversion and 5-HMF separation," Renewable Energy, Elsevier, vol. 189(C), pages 392-401.
    17. Ma, Shuaishuai & Li, Yuling & Li, Jingxue & Yu, Xiaona & Cui, Zongjun & Yuan, Xufeng & Zhu, Wanbin & Wang, Hongliang, 2022. "Features of single and combined technologies for lignocellulose pretreatment to enhance biomethane production," Renewable and Sustainable Energy Reviews, Elsevier, vol. 165(C).
    18. Qiu, Bingbing & Shi, Jicheng & Hu, Wei & Wang, Yanfang & Zhang, Donghui & Chu, Huaqiang, 2024. "Efficient and selective conversion of xylose to furfural over carbon-based solid acid catalyst in water-γ-valerolactone," Energy, Elsevier, vol. 294(C).
    19. Zhang, Pingbo & Liu, Peng & Fan, Mingming & Jiang, Pingping & Haryono, Agus, 2021. "High-performance magnetite nanoparticles catalyst for biodiesel production: Immobilization of 12-tungstophosphoric acid on SBA-15 works effectively," Renewable Energy, Elsevier, vol. 175(C), pages 244-252.
    20. Bakhtyari, Ali & Bardool, Roghayeh & Rahimpour, Mohammad Reza & Iulianelli, Adolfo, 2021. "Dehydration of bio-alcohols in an enhanced membrane-assisted reactor: A rigorous sensitivity analysis and multi-objective optimization," Renewable Energy, Elsevier, vol. 177(C), pages 519-543.

    Corrections

    All material on this site has been provided by the respective publishers and authors. You can help correct errors and omissions. When requesting a correction, please mention this item's handle: RePEc:eee:renene:v:182:y:2022:i:c:p:285-295. See general information about how to correct material in RePEc.

    If you have authored this item and are not yet registered with RePEc, we encourage you to do it here. This allows to link your profile to this item. It also allows you to accept potential citations to this item that we are uncertain about.

    If CitEc recognized a bibliographic reference but did not link an item in RePEc to it, you can help with this form .

    If you know of missing items citing this one, you can help us creating those links by adding the relevant references in the same way as above, for each refering item. If you are a registered author of this item, you may also want to check the "citations" tab in your RePEc Author Service profile, as there may be some citations waiting for confirmation.

    For technical questions regarding this item, or to correct its authors, title, abstract, bibliographic or download information, contact: Catherine Liu (email available below). General contact details of provider: http://www.journals.elsevier.com/renewable-energy .

    Please note that corrections may take a couple of weeks to filter through the various RePEc services.

    IDEAS is a RePEc service. RePEc uses bibliographic data supplied by the respective publishers.